

Test-Based Extended Finite-State Machines Induction with Evolutionary Algorithms and Ant Colony Optimization

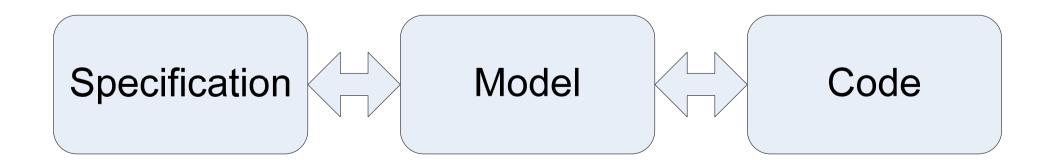
Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev tsarev@rain.ifmo.ru

St. Petersburg National Research University of Information Technologies, Mechanics and Optics

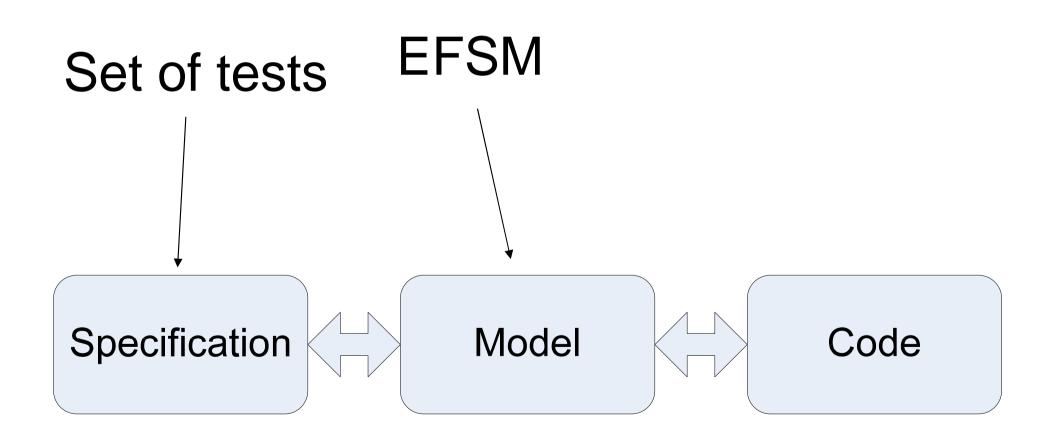
> GECCO-2012 Graduate Students Workshop July 7, 2012

Overview (1)

- Part of a bigger project on automated software engineering and automata-based programming
- We focus on model driven-development



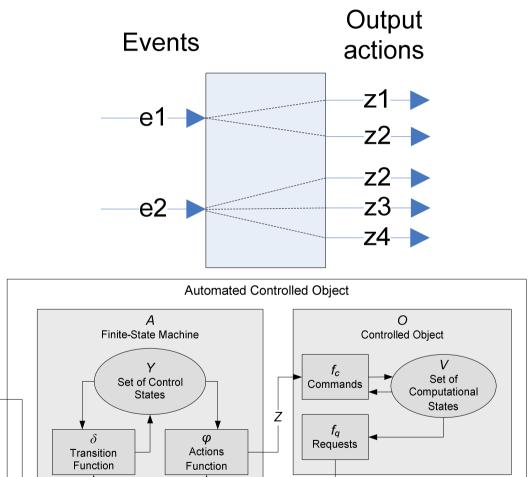
Overview (2)



Automata-based Programming

-----X_F--

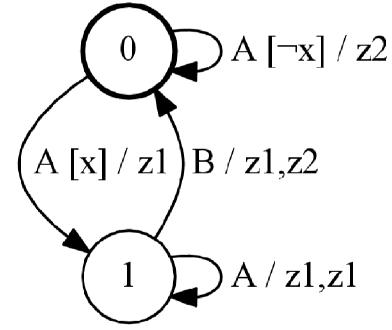
- Entities with complex behavior should be designed as automated controlled objects
- Control states and computational states
- Events
- Output actions



 X_{o}

Definitions

- EFSM:
 - input events
 - input Boolean variables
 - output actions
- Test is a pair of two sequences
 - Input sequence of pairs $I = \langle e, f \rangle$
 - e input event
 - f guard condition Boolean formula on input variables
 - A reference sequence of output actions
- EFSM on the picture complies with
 - <*A*, !*x*>, <*A*, *x*>
 - *z*2, *z*1
- EFSM on the picture does not comply with



Example – Alarm Clock (1)

- Four events
 - H button "H" pressed
 - M button "M"
 pressed
 - A button "A" pressed
 - T occurs on each time tick
- Two input variables
- Seven output actions

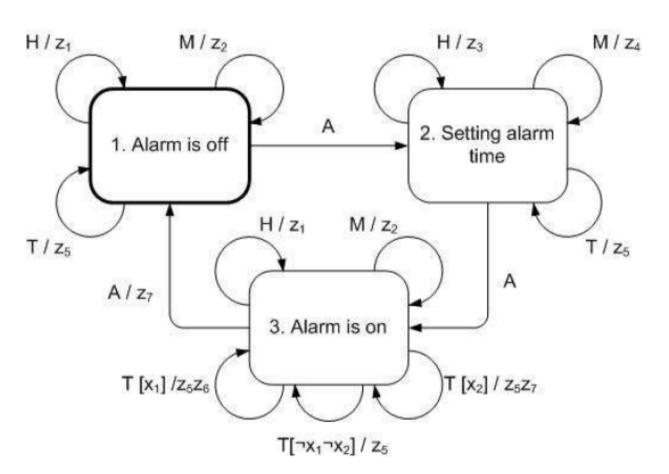
		•		11	
	1	M	A		

Example – Alarm Clock (2) Tests Model

- Test 1:
 - T
 - z5
- Test 2:
 - H
 - z1
- Test 3:
 - A, H

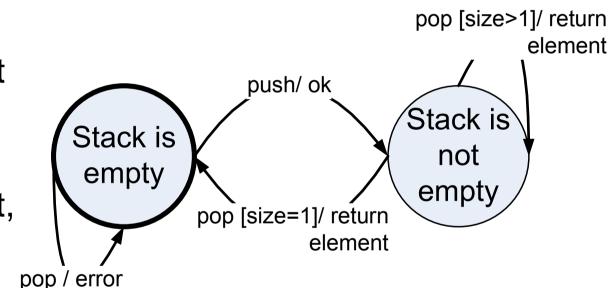
- z3

. . .



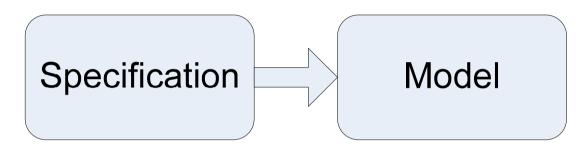
Example – Stack (1) Tests Model

- Test 1:
 - push, pop
 - ok, return element
- Test 2:
 - push, pop, pop
 - ok, return element, error
- Test 3:
 - push, push, pop, pop
 - ok, ok, return element, return element

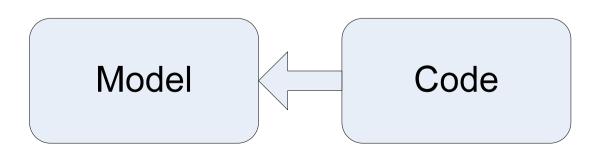


Problems Considered

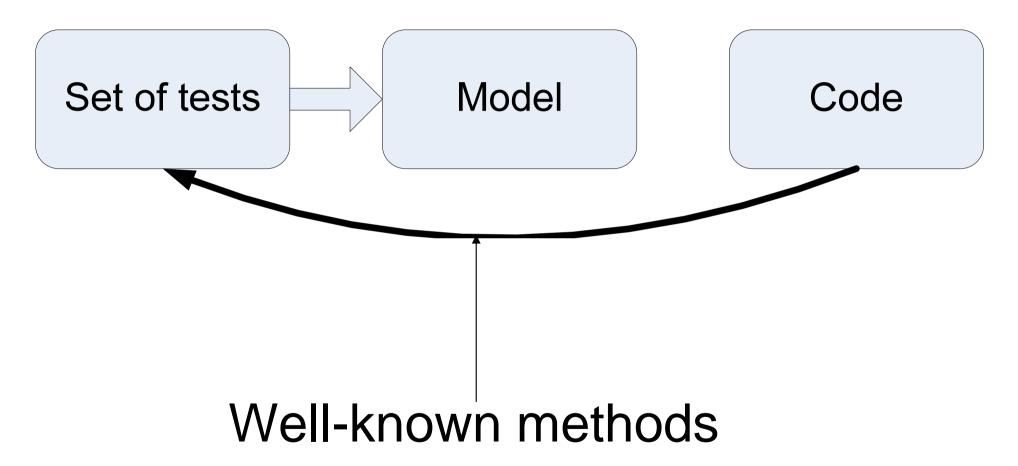
• Automated model design



• Model mining



Reduction to Automated Model Design



Problem Definition

- Input data:
 - Set of tests
 - Number of states in EFSM (C)
- Need to find an EFSM with C states complying with all tests

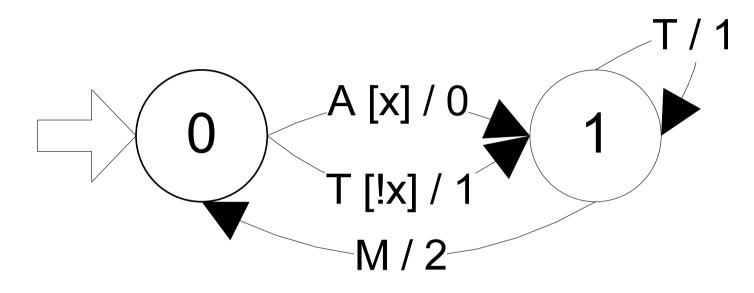
Precomputations

- For each pair of guard conditions from tests compute:
 - If they are same as Boolean functions
 - If they have common satisfying assignment
- Time complexity:
 - $O(n^2 2^{2m})$ where *n* is total size of tests' input sequences, *m* is maximal number of input variables occurring in guard condition (in practice *m* is not greater than 5)

Evolutionary Algorithms

- Random mutation hill climber and evolutionary strategy can be easily used
- Problem with genetic algorithms no meaningful crossover ("it is hard to automatically identify functionally coherent modules in automata")
 - Johnson, C. Genetic Programming with Fitness based on Model Checking. *Lecture Notes in Computer Science*. Springer Berlin / Heidelberg, 2007. Volume 4445/2007, pp. 114–124.
 - Lucas, S. and Reynolds, J. Learning Deterministic Finite Automata with a Smart State Labeling Algorithm. *IEEE Transactions on Pattern Analysis and Machine Intelligence*. Vol. 27, №7, 2005, pp. 1063– 1074.
- This problem can be solved with test-based crossover

Individual Representation

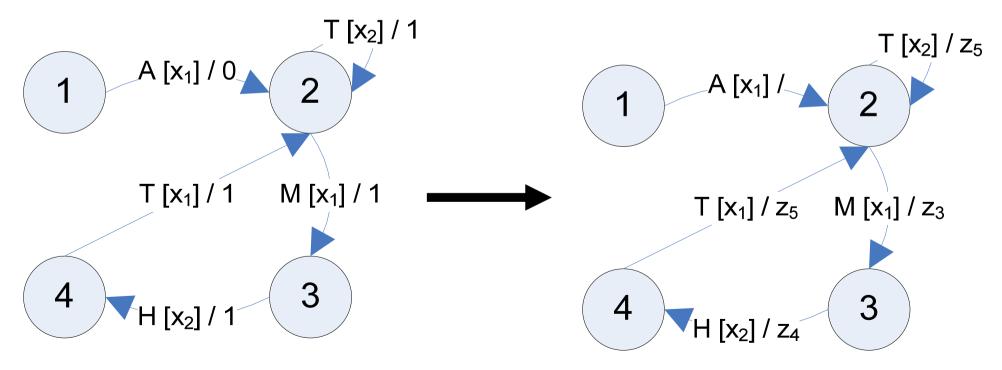


$\{ 2, 0, \{ \{A, x, 1, 0\}, \{T, !x, 1, 1\} \}, \{ \{T, true, 1, 1\}, \\ \{M, true, 0, 2\} \}$

All EFSMs considered during one of evolutionary algorithm have the same number of states

Transition Labeling Algorithm

 Applied to each individual before calculation of fitness function



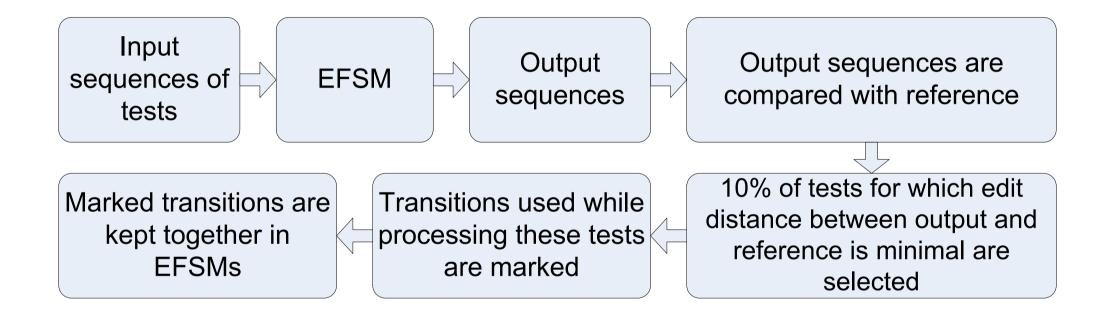
Mutation

- Change of transition
 - Final state
 - Event
 - Guard condition
 - Number of output actions
- Addition of deletion of a transitions

Fitness Function

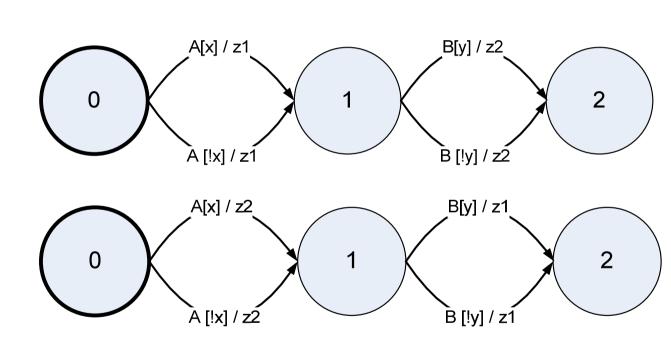


Test-based Crossover



Example (1)

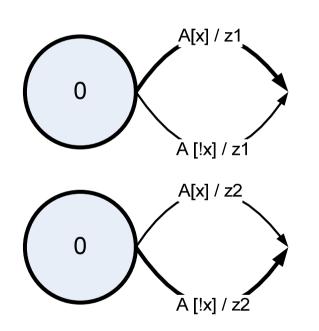
- Test set contains:
 - Test 1:
 - A [x], B [y]
 - z1, z2
 - -Test 2:
 - A [!x], B [!y]
 - z2, z1

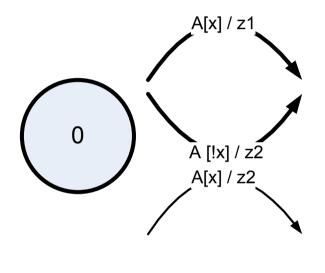


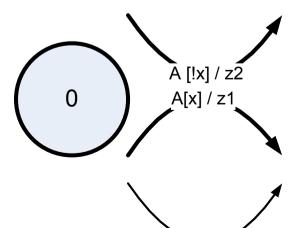
Example (2)

- Test set contains:
 - Test 1: A[x] / z1 B[y] / z2 • A [x], B [y] 0 2 1 • z1, z2 B [!y] / z2́ À [!x] / z1 - Test 2: B[y] / z1 A[x] / z2 • A [!x], B [!y] 0 2 1 • z2, z1 B [!y] / z1 [!x] / z2

Example (3) Offsprings



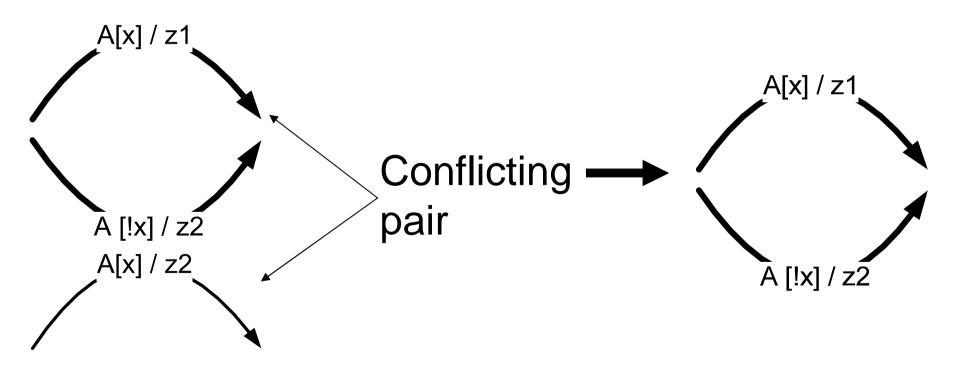




Ā [!x] / z1

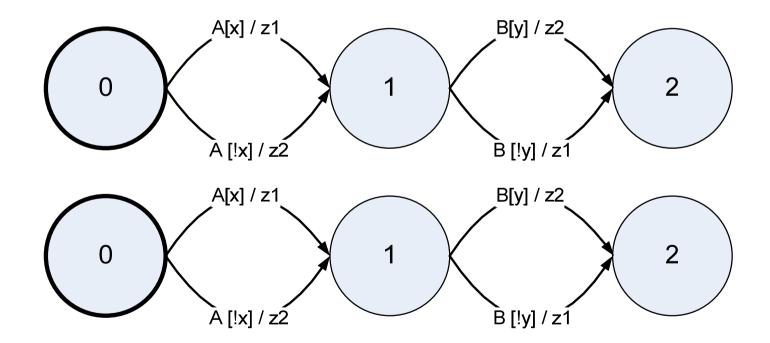
Example (4)

- Duplicate and contradictory transitions removal
- Showing for state 0 of first offspring



Example (5)

Both offsprings pass both tests



Ant Colony Optimization

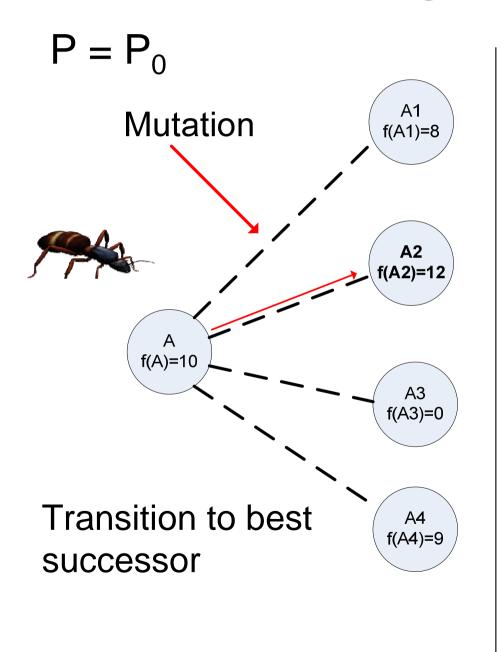
- Graph:
 - Nodes finite-state machines
 - Edges *mutations* of finite-state machines
 - Graph is too big to be constructed explicitly

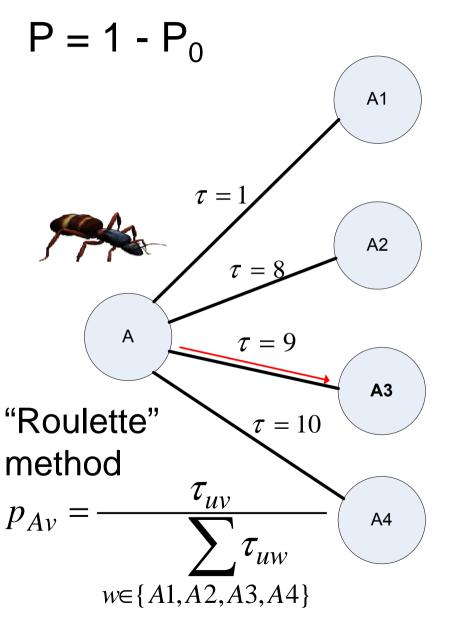
Algorithm:

- 1. Graph G = {random FSM}
- 2. While (true)

Launch colony on graph G Update pheromone values Check stop conditions: if stagnation, restart

Choosing the Next Node





25

Update Pheromone Values

- Quality of solution (ant path) max value of f among all nodes in path
- New pheromone value on edge:

$$\tau_{uv} = \rho \tau_{uv} + \Delta \tau_{uv}^{best}$$

- $\rho < 1 evaporation rate$
- $\Delta \tau_{uv}^{best}$ max pheromone value ever added to the edge (u, v)

Choosing Start Nodes on Restart

- Best path path from some node to a node with max value of f
- Start nodes are selected with "roulette" method from nodes of best path

Experiments (1)

- Six algorithms:
 - a genetic algorithm with traditional crossover (GA-1)
 - a random mutation hill climber (RMHC)
 - (1+1) evolutionary strategy (ES)
 - a genetic algorithm with test-based crossover (GA-2)
 - GA-2 hybridized with RMHC (GA-2+HC)
 - ant colony optimization (ACO)
- Input data: 38 tests for alarm clock
 - total length of input sequences 242
 - total length of reference sequences 195
- 1000 runs of each algorithm

Experiments (2)

Algorithm	Min	Max	Avg	Median
GA-1	855390	38882588	5805943	4588736
RMHC	1150	9592213	1423983	957746
ES	1506	9161811	3447390	856730
GA-2	32830	599022	117977	83787
GA-2+HC	26740	188509	53706	48106
ACO	2440	210971	53944	46293

Experiments (3) 1200000 Median number of fitness function evaluations 1000000 800000 600000 400000 200000 ACO 0 -2000000 8000000 0 4000000 6000000 10000000 12000000 GA-2+HC Maximal number of RMHC fitness function ES GA-2 evaluations

Summary

- Test-based crossover greatly improves the performance of GA
- GA on average significantly outperforms RMHC and ES
- ACO outperforms GA-2
- Difference between average performance of ACO and GA-2+HC is insignificant

Related Publications

- Tsarev F., Egorov K. Finite State Machine Induction using Genetic Programming Based on Testing and Model Checking / Proceedings of the 2011 GECCO Conference Companion on Genetic and Evolutionary Computation. NY. : ACM. 2011, pp. 759 – 762.
- Alexandrov A., Sergushichev A., Kazakov S., Tsarev F. Genetic Algorithm for Induction of Finite Automation with Continuous and Discrete Output Actions / Proceedings of the 2011 GECCO Conference Companion on Genetic and Evolutionary Computation. NY. : ACM. 2011, pp. 775 – 778.
- Ulyantsev V., Tsarev F. Extended Finite-State Machine Induction using SAT-Solver / Proceedings of the Tenth International Conference on Machine Learning and Applications, ICMLA 2011, Honolulu, HI, USA, 18-21 December 2011. IEEE Computer Society, 2011. Vol. 2. P. 346–349.

Thank you!

Questions?

Email: <u>tsarev@rain.ifmo.ru</u> Twitter: @fedortsarev