
Learning Finite-State Machines with Classical and
Mutation-Based Ant Colony Optimization:

Experimental Evaluation
Daniil Chivilikhin

St. Petersburg National Research University of Information
Technologies, Mechanics and Optics
Computer Technologies Department

St. Petersburg, Russia
Kronverksky pr., 49

Email: chivdan@rain.ifmo.ru

Vladimir Ulyantsev
St. Petersburg National Research University of Information

Technologies, Mechanics and Optics
Computer Technologies Department

St. Petersburg, Russia
Kronverksky pr., 49

Email: ulyantsev@rain.ifmo.ru

Abstract—The problem of learning finite-state machines (FSM)
is tackled by three Ant Colony Optimization (ACO) algorithm s.
The first two classical ACO algorithms are based on the classical
ACO combinatorial problem reduction, where nodes of the
ACO construction graph represent solution components, while
full solutions are built by the ants in the process of foraging.
The third recently introduced mutation-based ACO algorithm
employs another problem mapping, where construction graph
nodes represent complete solutions. Here, ants travel between
solutions to find the optimal one.

In this paper we try to take a step back from the mutation-
based ACO to find out if classical ACO algorithms can be used
for learning FSMs. It was shown that classical ACO algorithms
are inefficient for the problem of learning FSMs in comparison
to the mutation-based ACO algorithm.

Keywords-finite-state machine, automata, induction, inference,
machine learning

I. I NTRODUCTION

Ant colony optimization [1] is a metaheuristic inspired by
the foraging behavior of ants. In this paper we use ACO
to tackle the problem of learning FSMs, which plays a key
role in automata-based programming [2], [3]. This program-
ming paradigm proposes to use FSMs as key components of
software systems. The approach is useful for systems with
complex behavior, i.e. systems that can react differently to
the same events depending on the history. Examples of such
systems are network protocols and control systems. However,
manual construction of FSMs for such systems can be hard
or even impossible. Therefore, various search optimization
techniques are used are used to solve this problem auto-
matically. One of the greatest advantages of automata-based
programming is that programs designed using this paradigm
can be automatically verified using model checking [4] which
is impossible for other types of programs. That is, one can
automatically check temporal logic (e.g.LTL, Linear Time
Logic) properties formulated for a program.

ACO uses a special graph called theconstruction graphto
build solutions. In order to solve an arbitrary combinatorial

problem with ACO, it is typically reduced, or mapped, to
another problem in which the goal is to find a maximum
or minimum cost path in the construction graph. Nodes of
the construction graph represent solution components, while
full solutions correspond to paths in the graph. For problem
mappings performed in this canonical manner and for certain
types of ACO algorithms such asACObs,τmin, convergence in
value has been proven. That is, it was shown thatACObs,τmin

will find some optimal solution if given enough resources [5].
In this work we show that canonical mapping and classical

ACO algorithms with proven convergence are ineffective for
the problem of learning FSMs. Another recently introduced
ACO-based algorithm MuACOsm [6] produces more promis-
ing results, though no convergence guarantees currently exist.
The benchmark problem we consider is the quite common
Artificial Ant problem [7].

II. L EARNING FINITE-STATE MACHINES

A finite-state machine is a six-tuple(S, s0,Σ,∆, δ, λ),
whereS is a set of states,s0 ∈ S is the start state,Σ is a set
of input eventsand∆ is a set ofoutput actions. δ : S×Σ → S

is the transitionsfunction andλ : S × Σ → ∆ is the actions
function. An example of a finite-state machine is shown on
Fig. 1.

1

A/z

2
T/z

A/z

T/z

Fig. 1. An example of a finite-state machine with two states, two events
(T , A) and a single output actionz

Quality evalutation of FSMs is encapsulated into a real-
valuedfitness functionf . The closer the FSM’s behavior to the
desired one, the larger the value off . Thus, the FSM learning

problem is: given the number of statesNstates, set of input
eventsΣ and set of actions∆ find a FSM with parameters
(Nstates,Σ,∆) with a large enough fitness function value.

The problem of learning FSMs and other types of automata,
such as finite-state transducers (FST) and definite finite au-
tomata (DFA), is commonly solved using various metaheuris-
tic techniques. For instance, in [8] a random mutation hill
climbing evolutionary algorithm is applied to the problem of
learning deterministic finite automata, which are somewhat
similar to finite-state machines, from sets of labeled strings.
The same authors use evolutionary algorithms to learn finite-
state transducers from test examples [9]. In [10] a genetic
algorithm is applied to learning extended finite-state machines
from test examples andLTL-formulae. Finite-state machines
are learned with an evolutionary algorithm in [11] for the
Competition for Resources problem.

The authors of this paper recently introduced a new method
of learning FSMs called MuACOsm, which is based on ant
colony optimization. This new method was compared with
a number of evolutionary techniques for learning FSMs on
several benchmark problems [6], [12], [13] and proved to
be more effective than genetic algorithms and evolutionary
strategies. However, no attempt was made to learn or induce
finite-state machines using classical ACO yet. In this paper
we provide a way to apply classical ant colony optimization
algorithms to the problem of learning FSMs and compare our
mutation-based ACO method with classical ACO algorithms.

III. C LASSICAL ACO FOR LEARNING FSMS

A. General Scheme of Classical ACO Algorithms

Classical ACO algorithms, as described in [1], tackle com-
binatorial problems formalized as

(

Ŝ, f̂ ,Ω
)

, whereŜ is a set

of candidate solutions, f̂ is the objective functionand Ω is
a set ofconstraintsdefining feasible candidate solutions. The
goal is to find a globally optimal feasible solutions∗.

This combinatorial problem is mapped on another
problem defined in the following way. LetC =
{c1, . . . , cK} be a finite set of componentsand X =
{x = 〈ci1 , ci2 , . . . , cih , . . .〉 , |x| ≤ n < +∞} be a set ofprob-
lem states. Then, the set of feasible candidate solutionsŜ is
a subset ofX . X̃ ⊂ X is a set of feasible states, i.e. states
x ∈ X that can be completed to a solution satisfying the
constraintsΩ. The set of feasible solutions is̃S = X̃ ∩S and
S∗ ⊂ S̃ is a non-empty set of optimal feasible solutions. Next,
the construction graphGC = (C,L) is a graph with a set of
nodesC and a set of connectionsL which fully connectC.
The goal in the mapped problem is to find a maximum cost
path inGC with respect tof̂ which satisfies the constraintsΩ
and corresponds to a feasible solution.

In ACO each connection, or edge(u, v) of the construction
graph has an associatedpheromone valueτuv and can have
an associatedheuristic informationηuv. Pheromone values
play a role of the colony’s long-term memory, while heuristic
information represents some apriori knowledge about the
problem. Solutions are built by agents called ants, which are

probabilistic procedures determining how to add components
to the current solution depending on pheromone values and
heuristic information. An ACO algorithm typically consists
of three steps that are repeated until an optimal solution is
found or the resources allotted to the algorithm are depleted.
Examples of such stopping criteria include a fixed number of
algorithm iterations, a fixed number of fitness evaluations or
convergence of a fixed number of ants to the same path.

On the first step calledConstructAntSolutions a
colony of ants traverse the graph to build solutions. Each ant is
placed on some node of the construction graph. The ant adds
components to its current solution by traversing the graph until
it has built a complete solution. It selects the next node to visit
according to some probabilistic rule. Ants continue traversing
the graph until each of them has built a complete solution to
the problem.

On the second step calledUpdatePheromones
pheromone values on connectionsL are updated. A
particular pheromone value can increase if the edge it
is associated with has been traveled by an ant or it can
decrease due to pheromone evaporation. The third step called
DaemonActions is optional. It may be used to perform
operations that cannot be executed by individual ants, possibly
using domain knowledge.

B. Classical ACO Problem Reduction

In our problem statement defined in the previous section,
the set of candidate solutionŝS is the set of all FSMs with
parameters(|S| = Nstates,Σ,∆) and the objective function̂f
is the fitness functionf . The constraintsΩ are that a FSM
has to be deterministic, that is, it should contain exactly one
transition for each start statei ∈ S and evente ∈ Σ. The
set of componentsC is defined as a set of all possible FSM
transitions:

C = {t = 〈i, j, e, a〉 , i, j ∈ S, e ∈ Σ, a ∈ ∆} , (1)

where i ∈ S is the transition’s start state,j ∈ S is the end
state,e ∈ Σ is an event anda ∈ ∆ is an output action.
Therefore, the construction graphGC contains exactly|C| =
|S|2·|Σ|·|∆| nodes. The set of connectionsL fully connects the
components. An example of the described construction graph
is given on Fig. 2. Green connections were already followed
by the ant, red connections are forbidden due to constraints
and blue connections are allowed for the ant to choose from.
If the ant chooses a certain connection it will build the FSM
from Fig. 1.

To implement the constraints, thek-th ant uses its internal
memory to store its path of traversed componentsLk

t . Let the
k-th ant be located at nodeu ∈ C with a set of adjacent
nodesNu. First, the ant applies the constraints to determine
possible nodes it can move to. To do that, it scans its memory
along withNu and forms a set of componentŝNu such that
no transitiont ∈ N̂u has a start statey ∈ S and eventε ∈ Σ
where∃r ∈ Lk

t : r.i = y ∧ r.e = ε. The next nodev ∈ N̂u is

1→1 [T/z]

1→1 [A/z]

1→2 [T/z]

1→2 [A/z]

2→2 [T/z]

2→2 [A/z]

2→1 [T/z]

2→1 [A/z]

Fig. 2. An example of a classical ACO construction graph for learning
FSMs. Green connections were already followed by the ant, red connections
are forbidden due to constraints and blue connections are allowed

selected with a probability:

pv =
ταuv

∑

w∈N̂u

ταuw
, (2)

whereα ∈ (0,+∞) is a parameter representing the signifi-
cance of pheromone values. This equation does not take into
account heuristic information because there seems to be no
meaningful way to define it for the problem of learning FSMs
with canonical mapping. From the start, this seems to be a
major drawback of the classical ACO approach to learning
FSMs.

C. Classical ACO Algorithms Used

We use the Elitist Ant System (EAS) algorithm [14] and the
ACObs,τmin algorithm [5]. Both algorithms follow the general
scheme described in section III-A. A colony ofNants ants is
used to construct solutions. The optionalDaemonActions
procedure is not used in either of the algorithms.

On every iteration during the
ConstructAntSolutions step each ant traverses
the construction graph until it builds a complete solution,i.e.
a deterministic FSM. On each step the ant selects the next
node of the construction graph from the successor nodes of
the current node with respect to constraints. The probability
of selecting a particular node is calculated using equation(2).

The UpdatePheromones procedure in the considered
algorithms is as follows. In the EAS the best-so-far solution
sbestdeposits pheromone along with all solutions on the current
iteration. Pheromone values are updated according to the
formula:

τuv = (1− ρ)τuv +

Nants
∑

k=1

∆τkuv + welit ·∆τbest
uv , (3)

wherewelit ∈ [0, 1] defines the weight of the elitist solution,

ρ ∈ [0, 1] is the pheromone evaporation rate,

∆τkuv =

{

f(sk), (u, v) ∈ Lk
t

0, otherwise
(4)

and

∆τbest
uv =

{

f(sbest), (u, v) ∈ Lbest
t

0, otherwise
, (5)

where sk is the k-th solution on the current iteration and
Lbest
t is the set of connections traversed by the best-so-far

ant. Pheromone update inACObs,τmin is similar, but only
the best-so-far solution deposits pheromone withwelit = 1.
Furthermore, pheromone values in both algorithms are kept
above a lower boundτmin, which was chosen to have a value
of 0.1 in all performed experiments.

IV. M UTATION-BASED ACO FOR LEARNING FSMS

The mutation-based ACO, which was first introduced in [6]
for learning FSMs, uses a different type of problem mapping,
even though it resembles classical ACO in the way solutions
are constructed. In the mutation-based ACO algorithm for
learning FSMs called MuACOsm, nodes of the construction
graph G represent complete solutions instead of solution
components. Edges of the construction graph correspond to
mutationsof FSMs – small changes in the FSM structure. Two
FSM mutation types are used: for a random transition in the
FSM we change either the action performed on this transition
or the state it leads to. The ants travel between solutions by
mutating FSMs associated with construction graph nodes.

More formally, nodesu andv of G can be connected with
an edge(u, v) if FSM A2 associated withv can be acquired
from FSMA1 associated withu using one mutation operation.
Consequently, any FSM can be transformed into any other
FSM with certain mutations. Therefore, a fully constructed
graphG will contain a path of mutations connecting any two
FSMs. However, full construction ofG is infeasible since it
would effectively lead to performing a brute force search. An
example of the construction graph used in MuACOsmis shown
on Fig. 3. Each edge of the graph is marked with a mutation
written in the following notation:

• Tr : (s1, e) → s2 means that the end state of transition
from states1 with evente has to be set to states2;

• Out: (s1, e) → z means that the output action of transi-
tion from states1 with evente has to be set toz.

1

2

 Tr: (1, T) → 2

3

 Out: (2, A) → z1

4

5

 Tr: (1, A) → 1

6

7

 Out: (1, T) → z2

8 9

Fig. 3. An example of a small part of the construction graph used in
MuACOsm

The construction graph is initially empty. First, a ran-
dom initial FSM with a fixed number of statesNstates is
generated. This is done by choosing a random action and

destination state for each FSM state and input event. The
random solution is added to the construction graph and
becomes its first node. Then,ConstructAntSolutions
andUpdatePheromones procedures are executed until an
optimal solution is found or computational resources are
depleted.

On theConstructAntSolutions step, all ants are first
placed on the node associated with the best-so-far solution.
Each ant, being located at nodeu, uniformly randomly selects
one of the following rules for determining the next node.

1) Construct new solutions. The ant constructs exactly
Nmut mutations of its current solution associated with
nodeu. Each mutated solution is added to the graphG,
if not already present there: a new nodet is constructed
and connected tou with edge(u, t). The ant selects the
best constructed node, i.e. node associated with a FSM
with the largest fitness function value, and moves to that
node.

2) Probabilistic selection. The next nodev is selected from
the set of adjacent nodesNu according to the formula:

pv =
ταuv · η

β
uv

∑

w∈Nu

ταuw · ηβuw
, (6)

whereηuv = max (ηmin, f(v)− f(u)) and
α, β ∈ (0,+∞) are parameters representing the signif-
icance of pheromone values and heuristic information,
respectively.

Termination conditions for individual ants and the whole
colony are defined in the following way. Each ant is allowed
to make nstag steps without an increase of its best fitness
value before it is stopped. Similarly, the colony is givenNstag

iterations to run without an increase in the best fitness value
before the algorithm is restarted. On each colony iteration,
after all ants have finished building solutions, pheromone
values are updated by theUpdatePheromones procedure
as follows. For each graph edge(u, v) we storeτbest

uv – the
best pheromone value that any ant has ever deposited on this
edge. First, for each ant path we select a sub-path that spans
from the start to the best node in the path and update values of
τbest
uv on its edges. Then, for each graph edge(u, v) pheromone

values are updated according to the formula:

τuv = (1− ρ)τuv + τbest
uv . (7)

For more detailed information about MuACOsmand its com-
parison with different evolutionary computation techniques
see [13].

V. CASE STUDY: ARTIFICIAL ANT PROBLEM

A. Artificial Ant Problem Description

In the Artificial Ant problem [7] the goal is to build an FSM
optimally controlling an agent in a game performed on square
toroidal field divided into32 × 32 cells. In order to avoid
confusing this artificial ant with ants used in ACO algorithms,
we will call it the agent. The field contains 89 pellets of food,

or apples, distributed along a certain trail. The agent is initially
located in the leftmost upper cell and is “looking” east. It can
determine whether the next cell contains a piece of food (event
F) or not (event!F). In this work we use the Santa Fe field
shown on Fig. 4 instead of the John Muir field originally used
in [7] and considered in [6]. Black cells contain food, white
cells are empty and gray cells depict the optimal trail.

Fig. 4. The Santa Fe field

The goal is to build a FSM controlling the agent that will
allow it to eat all 89 pellets of food in no more thansmax

steps. On each step the agent can turn left (actionL), turn
right (actionR) or move forward (actionM). If the cell to
which the agent moves contains a pellet of food, the agent
eats it. We use a fitness function that takes into account both
the number of eaten pelletsnfood and the number of the step
slast on which the last pellet was eaten:

f = nfood +
smax− slast− 1

smax
. (8)

B. Tuning Algorithm Parameters

Parameter values for the EAS,ACObs,τmin and MuACOsm
were selected by performing a full factorial experiment con-
sidering the Artificial Ant problem withsmax = 600 and FSMs
consisting of five states. Tuning was performed on a personal
computer with anIntel i7 3.4 GHzprocessor. For tuning each
algorithm we selected certain levels of each parameter’s value
and executed the algorithm with all parameter value combi-
nations. Each algorithm was run 50 times on each parameter
value combination. Each run was limited to a maximum of
30000 fitness evaluations. To assess the successfulness of the
algorithms we used thesuccess rate, which is defined as
simply the ratio of experimental runs in which an optimal
solution with a fitness value greater than or equal to 89 was
found. Parameter value sets were compared according to the
success rate over these 50 experiments.

After performing the full factorial experiments for each
algorithm we selected the parameter value set that yield the
highest success rate. The total tuning times for tuning are:
18392 sec. forACObs,τmin , 66346 sec. for EAS and11174 sec.
for MuACOsm. This means that the classical ACO algorithms

were given more time for tuning which theoretically puts them
in a more favorable position than MuACOsmwhich used the
least time for tuning. Parameter value levels used in the full
factorial experiments are listed in Table I. Parameter values
that were selected as the best are highlighted in bold.

TABLE I
FULL FACTORIAL DESIGN OF EXPERIMENTAL SETUP: PARAMETER VALUE

LEVELS FOR ALL ALGORITHMS. BEST PARAMETER VALUES ARE

HIGHLIGHTED IN BOLD

Parameter ACObs,τmin EAS MuACO sm
ρ 0.1, 0.5, 0.9 0.1, 0.5, 0.9 0.1, 0.5, 0.9
Nants 1, 5, 10 1, 5, 10 5, 10
α 1, 3, 5 1, 3, 5 1, 5
β – – 1, 5
welit – 0.1, 0.5, 0.9 –
nstag – – 5, 10, 20
Nstag – – 5, 10, 20
Nmut – – 5, 10
pnew – – 0.5

C. Experiments

Benchmarking experiments were performed for FSMs with
Nstates∈ [5, 10] andsmax = 400. We intentionally used a lower
value ofsmax so that we test the algorithms on problems that
are harder than the one we tuned them on. Each experiment
was run for a maximum of30000 fitness evaluations and
was repeated100 times. For each number of FSM states
we recorded the mean running time, mean number of fitness
evaluations and success rate over all experimental runs. Fig. 5
shows the success rate of the compared algorithms, Fig. 6
shows mean numbers of used fitness evaluations and Fig. 7
shows the mean execution time using a logarithmic scale.

5 6 7 8 9 10

Number of FSM states

0

20

40

60

80

100

M
e
a
n

su
cc

e
ss

ra
te

,
%

Elitist AS ACObs,τmin MuACOsm

Fig. 5. Success rate of experimental runs for EAS,ACObs,τmin and
MuACOsm

To check the statistical significance of the acquired results
we used the ANOVA [15] statistical test. The test was applied
to theACObs,τmin and MuACOsmalgorithms. This test calcu-
lated the probability that the two algorithms yield the same
success rate. ANOVA was run for each value ofNstates. The

5 6 7 8 9 10

Number of FSM states

10000

15000

20000

25000

30000

M
e
a
n

n
u

m
b
e
rs

o
f

fi
tn

e
ss

e
v
a
lu

a
ti

o
n

s

Elitist AS ACObs,τmin MuACOsm

Fig. 6. Mean numbers of fitness evaluations in experimental runs for EAS,
ACObs,τmin and MuACOsm

5 6 7 8 9 10

Number of FSM states

10
−1

10
0

10
1

10
2

10
3

M
e
a
n

e
x
e
cu

ti
o
n

ti
m

e
,
s.

(l
o
g

sc
a
le

)

Elitist AS ACObs,τmin MuACOsm

Fig. 7. Mean execution time of experimental runs for EAS,ACObs,τmin
and MuACOsm

resulting p-values of having similar success rates were less
than10−4 for each number of FSM states, which means that
the difference in the algorithms’ performance is statistically
significant.

VI. D ISCUSSION

Presented experimental results demonstrate that the
mutation-based ACO is more efficient than classical ACO in
all cases of the considered problem in terms of execution
time, success rate and number of required fitness evaluations.
Perhaps this was to be expected, since the number of nodes
in the classical algorithms’ construction graphs increases as
N2

states and the number of connections increases asN4

states.
Consequently, classical algorithms use up more computational
resources for performing walks on the graph than for com-
puting fitness function values. On the contrary, MuACOsm
mainly uses computational resources for fitness evaluation.

This is demonstrated by the fact that, as can be seen on
Fig. 7, mean execution times of both EAS andACObs,τmin

increase exponentially with the increase of the number of FSM
states. The mean execution time of MuACOsm stays almost
constant for all values ofNstatesand seems to depend only on
the number of fitness evaluations, which can be derived from
comparing MuACOsmplots on Fig. 6 and Fig. 7.

To further illustrate this, for each run we calculated the
percentage of the execution time which was used for fitness
evaluation. The resulting values are presented in Table II.
These values allow us to say thatACObs,τmin uses a significant
amount of time for its internal computations: almost97% for
FSMs with five states and about99% for FSMs with ten
states. On the contrary, MuACOsm uses only about half of
time for internal computations. Therefore, if the algorithms
were allotted the same computational time instead of the
fitness evaluation number limit, classical algorithms would
probably perform even worse. Futhermore, when the number
of FSM states was increased from five to ten, the fitness time
percentage ofACObs,τmin increased almost by a factor of ten,
while the fitness time percentage of MuACOsmonly increased
by about1.2.

TABLE II
PERCENTAGE OF ALGORITHM EXECUTION TIME USED FOR FITNESS

EVALUATION

Nstates ACObs,τmin MuACO sm
5 3.02 % 49.66 %

10 0.34 % 61.4 %

VII. C ONCLUSION

Classical and mutation-based ACO algorithms for learning
FSMs were presented. It was experimentally shown that clas-
sical ACO algorithms based on random walks on construction
graphs that consist of solution components are inefficient for
the problem of learning FSMs. On the contrary, the mutation-
based algorithm MuACOsm performed significantly better,
which is demonstrated by both execution data such as mean
numbers of fitness evaluations and execution time, as well as
by a statistical significance test. This is rather unfortunate,
since classical algorithms were proven to converge in value,
while devising such a proof for the mutation-based algorithm
remains a challenging task for us.

Future work includes futher development of the mutation-
based MuACOsmalgorithm to cope with more complex prob-
lems such as inferring FSMs from test examples andLTL-
formulae, as well as devising some kind of a convergence
proof for MuACOsm.

ACKNOWLEDGEMENTS

Research was supported by the Ministry of Education and
Science of Russian Federation in the framework of the federal

program “Scientific and scientific-pedagogical personnel of
innovative Russia in 2009-2013” (contract 16.740.11.0455,
agreement 14.B37.21.0397), University ITMO development

program in 2012-2018 and by the University ITMO research
project 610455.

REFERENCES

[1] M. Dorigo and T. Stützle,Ant Colony Optimization. MIT Press, 2004.
[2] N. Polykarpova and A. Shalyto,Automata-based programming. Piter.,

2009, in Russian.
[3] A. Shalyto and N. Tukkel’, “Switch technology: An automated approach

to developing software for reactive systems,”Programming and Com-
puter Software, vol. 27, no. 5, pp. 260–276, 2001.

[4] S. E. Velder, M. A. Lukin, A. A. Shalyto, and B. R. Yaminov,Verification
of automata-based programs (Verificatsiya avtomatnykh programm).
Nauka, 2011, in Russian.

[5] T. Stützle and M. Dorigo, “A short convergence proof fora class of
ant colony optimization algorithms,”IEEE Transactions on Evolutionary
Computation, pp. 358–365, 2002.

[6] D. Chivilikhin and V. Ulyantsev, “Learning finite-statemachines with
ant colony optimization,” in Proceedings of the 8th international
conference on Swarm Intelligence, ser. ANTS’12. Berlin, Heidelberg:
Springer-Verlag, 2012, pp. 268–275. [Online]. Available:http://dx.doi.
org/10.1007/978-3-642-32650-927

[7] D. Jefferson, R. Collins, C. Cooper, M. Dyer, M. Flowers,R. Korf,
C. Taylor, and A. Wang, “Evolution as a theme in artificial life,” Artificial
Life II, 1991.

[8] S. Lucas and T. Reynolds, “Learning dfa: evolution versus evidence
driven state merging,” inProceedings of the 2003 Congress on Evolu-
tionary Computation. CEC ’03, vol. 1, 2003, pp. 351–358.

[9] S. Lucas and J. Reynolds, “Learning finite state transducers: Evolution
versus heuristic state merging,”IEEE Transactions on Evolutionary
Computation., vol. 11, no. 3, pp. 308–325, 2007.

[10] F. Tsarev and K. Egorov, “Finite state machine induction using
genetic algorithm based on testing and model checking,” in
Proceedings of the 13th annual conference companion on Genetic
and evolutionary computation, ser. GECCO ’11. New York,
NY, USA: ACM, 2011, pp. 759–762. [Online]. Available: http:
//doi.acm.org/10.1145/2001858.2002085

[11] W. M. Spears and D. F. Gordon, “Evolving finite-state machine
strategies for protecting resources,” inProceedings of the 12th
International Symposium on Foundations of Intelligent Systems, ser.
ISMIS ’00. London, UK, UK: Springer-Verlag, 2000, pp. 166–175.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646359.690248

[12] D. Chivilikhin, V. Ulyantsev, and F. Tsarev, “Test-based extended finite-
state machines induction with evolutionary algorithms andant colony
optimization,” inProceedings of the fourteenth international conference
on Genetic and evolutionary computation conference companion, ser.
GECCO Companion ’12. New York, NY, USA: ACM, 2012, pp. 603–
606. [Online]. Available: http://doi.acm.org/10.1145/2330784.2330883

[13] D. Chivilikhin and V. Ulyantsev, “Muacosm: a new mutation-
based ant colony optimization algorithm for learning finite-state
machines,” inProceeding of the fifteenth annual conference on Genetic
and evolutionary computation conference, ser. GECCO ’13. New
York, NY, USA: ACM, 2013, pp. 511–518. [Online]. Available:
http://doi.acm.org/10.1145/2463372.2463440

[14] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by
a colony of cooperating agents,”IEEE Transactions on Systems, Man,
and Cybernetics, Part B: Cybernetics, vol. 26, no. 1, pp. 29–41, 1996.

[15] R. G. Miller, Beyond ANOVA: Basics of Applied Statistics (Texts in
Statistical Science Series). Chapman & Hall/CRC, Jan. 1997. [Online].
Available: http://www.worldcat.org/isbn/0412070111

