

MuACOsm – A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines

Daniil Chivilikhin and Vladimir Ulyantsev

National Research University of IT, Mechanics and Optics St. Petersburg, Russia

Evolutionary and Combinatorial Optimization Track @ GECCO 2013

July 8, 2013

Motivation: Reliable software

- Systems with high cost of failure
 - Energy industry
 - Aircraft industry
 - Space industry

. . .

- We want to have reliable software
 - Testing is not enough
 - Verification is needed

Introduction (1)

- Automated software engineering
- Model-driven development
- Automata-based programming

Finite-State Machine

- S set of states
- $s_0 \in S$ initial state
- Σ set of input events
- Δ set of output actions
- $\delta: S \times \Sigma \rightarrow S \text{transition function}$
- $\lambda: S \times \Sigma \rightarrow \Delta$ actions function

Example:

- two states
- events = $\{A, T\}$
- actions = { z_1, z_2, z_3, z_4 }

Automata-based programming

Design programs with complex behavior as automated-controlled objects

Automata-based programming: advantages

Model before programming code, not vice versa

- Possibility of program verification using
 Model Checking
- You can check temporal properties (LTL)

Issues

- Hard to build an FSM with desired structure and behavior
- Several problems of learning FSMs were proven to be NP-hard
- One of the solutions metaheuristics

Learning finite-state machines with metaheuristics

- N_{states} number of states
- Σ input events
- Δ output actions
- $X = (N_{\text{states}}, \Sigma, \Delta)$ search space

Approaches to learning FSMs

- Greedy heuristics
 problem-specific
- Reduction to SAT and CSP problems
 - fast
 - problem-specific
- Evolutionary algorithms (general)
 slow

Proposed approach

- Based on Ant Colony Optimization (ACO)
- Non-standard problem reduction
- Modified ACO algorithm

Solution representation

Transition table			Output table		
δ	Event		λ	Event	
State	A	T	State	A	T
1	1	2	1	<i>Z</i> ₁	<i>Z</i> ₂
2	2	1	2	<i>z</i> ₂	<i>Z</i> ₃

"Canonical" way to apply ACO

- Reduce problem to finding a minimum cost path in some complete graph
- Vertices FSM transitions: $- \langle i \in S, j \in S, e \in \Sigma, a \in \Delta \rangle$
- Each ant adds transitions to its FSM

"Canonical" ACO: example

- 2 states
- 2 events
- 1 action

"Canonical" ACO: issues

- Number of vertices in the construction graph grows as $(N_{\text{states}})^2 \times |\Sigma| \times |\Delta|$
- No meaningful way to define heuristic information
- Later we show that "canonical" ACO is ineffective for FSM learning

Proposed algorithm: MuACOsm

- Mutation-Based ACO for learning FSMs
- Uses a non-standard problem reduction
- Modified ACO

Problem reduction: MuACOsm vs. "canonical"

- "Canonical" ACO
 - Nodes are solution components
 - Full solutions are built by ants
- Proposed MuACOsm algorithm
 - Nodes are full solutions (FSMs)
 - Ants travel between full solutions

FSM Mutations

ACO for Learning FSMs

MuACOsm problem reduction

- Construction graph
 - nodes are FSMs
 - edges are mutations of FSMs

Part of real search space (1)

ACO for Learning FSMs

Part of real search space (2)

Heuristic information

Finite-state machines

ACO for Learning FSMs

ACO algorithm

 A_0 = random FSM Improve A_0 with (1+1)-ES Graph = $\{A_0\}$ while not stop() do ConstructAntSolutions UpdatePheromoneValues DaemonActions

Constructing ant solutions

- Use a colony of ants
- An ant is placed on a graph node
- Each ant has a limited number of steps
- On each step the ant moves to the next node

Ant step: selecting the next node

Pheromone update

- Ant path quality = max fitness value on a path
- Update τ_{uv}^{best} largest pheromone value deployed on edge (u, v)
- Update pheromone values:

$$\tau_{uv} = (1 - \rho)\tau_{uv} + \tau_{uv}^{best}$$

• $\rho \in [0,1]$ – pheromone evaporation rate

Differences from previous work

- Added heuristic information
- Changed start node selection for ants
- Coupling with (1+1)-ES
- More experiments (later)
- More comparisons with other authors
- Harder problem

"Simple" problem: Artificial Ant

- Toroidal field N×N
- M pieces of food
- s_{max} time steps
- Fixed position of food and the ant
- Goal build an FSM, such that the ant will eat all food in K steps

Field example: John Muir Trail

Artificial Ant: Fitness function

$$f = n_{\text{food}} + \frac{s_{\text{max}} - s_{\text{last}} - 1}{s_{\text{max}}}$$

- n_{food} number of eaten food pieces
- s_{max} max number of allotted steps
- s_{last} number of used steps

"Simple" problem: Artificial Ant

- Two fields:
 - Santa Fe Trail
 - John Muir Trail
- Comparison:
 - "Canonical" ACO
 - Christensen et al. (2007)
 - Tsarev et al. (2007)
 - Chellapilla et al. (1999)

Santa Fe Trail

"Canonical" ACO

	"Canonical" ACO	MuACOsm
State count	Success rate, %	Success rate, %
5	18	87
10	10	91

Santa Fe Trail (Christensen et al., 600 steps)

Fitness evaluation count Number of FSM states

John Muir Trail (Tsarev et al., 2007): 200 steps

Number of FSM states

MuACOsm is 30 times faster for FSMs with 7 states

"Harder" problem: learning Extended Finite-State Machines (1)

"Harder" problem: learning Extended Finite-State Machines (2)

Input data:

- Number of states C and sets Σ and Δ
- Set of test examples T
- $T_i = <$ input sequence I_{i} , output sequence $O_i >$

NP-hard problem: build an EFSM with C states compliant with tests T

Learning EFSMs: Fitness function

- Pass inputs to EFSM, record outputs
- Compare generated outputs with references
- Fitness = string similarity measure (edit distance)

$$f' = \frac{1}{|T|} \sum_{j=1}^{|T|} \left(1 - \frac{ED(O_j, A_j)}{\max(len(O_j), len(A_j))} \right)$$
$$f = 100 \cdot f' + \frac{1}{100} \cdot (100 - n_{trans})$$

Experimental setup

- 1. Generate random EFSM with C states
- 2. Generate set of tests of total length C×150
- 3. Learn EFSM
- 4. Experiment for each C repeated 100 times
- 5. Run until perfect fitness
- 6. Record mean number of fitness evaluations

Learning random EFSMs

MuACOsm -Genetic Algorithm

Conclusion

- Developed new ACO-based algorithm for learning FSMs and EFSMs
- MuACOsm greatly outperforms GA on considered problems
- Generated programs can be verified with Model Checking

Future work

- Better FSM representation to deal with isomorphism
- Use novelty search
- Employ verification in learning process

Acknowledgements

We thank the ACM for the student travel grants

Thank you for your attention!

MuACOsm – A New Mutation-Based Ant Colony Optimization Algorithm for Learning Finite-State Machines

Daniil Chivililikhin Vladimir Ulyantsev

chivdan@gmail.com

This presentation online: http://rain.ifmo.ru/~chivdan/papers/2013/ gecco-2013-presentation.pdf

