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Motivation: Reliable software 

• Systems with high cost of failure 

– Energy industry 

– Aircraft industry 

– Space industry 

– … 

• We want to have reliable software 

– Testing is not enough 

– Verification is needed 
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Introduction (1) 

• Automated software engineering 

• Model-driven development 

• Automata-based programming 

Software

specification
Model Code
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Introduction (2) 

Software

specification
Model Code

Finite-state 

machine 
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Finite-State Machine 

• S – set of states 

• s0 ∈ S – initial state 

• Σ – set of input events 

• Δ – set of output actions 

• δ: S×Σ→S – transition function 

• λ: S×Σ→Δ – actions function 

Example: 

• two states 

• events = {A, T} 

• actions = {z1, z2, z3, z4}  
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Automated-controlled object

Finite-state 

machine

Controlled 

objectActions

Events

Automata-based programming 

Design programs with 

complex behavior as 

automated-controlled 

objects 

e1

e2

z1

z3

Events
Output 

actions

z2

z4

z2
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Automata-based programming: 

advantages 
• Model before programming code, not vice 

versa 

 

 

 

• Possibility of program verification using 

Model Checking 

• You can check temporal properties (LTL) 

 

Model Code

Finite-state machine
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Issues 

• Hard to build an FSM with desired 

structure and behavior 

• Several problems of learning FSMs were 

proven to be NP-hard 

• One of the solutions – metaheuristics 
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Software

specification

Test 

examples

Modeling 

environment

Fitness function 

f: X → R

Learning finite-state machines with 

metaheuristics 

 

 

• Nstates – number of states 

• Σ – input events 

• Δ – output actions 

• X = (Nstates, Σ, Δ) –  

    search space 
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Approaches to learning FSMs 

• Greedy heuristics 

– problem-specific 

• Reduction to SAT and CSP problems 

– fast 

– problem-specific 

• Evolutionary algorithms (general) 

– slow 
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Proposed approach 

• Based on Ant Colony Optimization (ACO) 

• Non-standard problem reduction 

• Modified ACO algorithm 
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Solution representation 

Transition table   Output table 

δ Event   λ Event 

State A T   State A T 

1 1 2   1 z1 z2 

2 2 1   2 z2 z3 
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“Canonical” way to apply ACO  

• Reduce problem to finding a minimum cost 
path in some complete graph 

• Vertices – FSM transitions: 

– <i ∈ S, j ∈ S, e ∈ Σ, a ∈ Δ> 

• Each ant adds transitions to its FSM 
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“Canonical” ACO: example 

• 2 states 

• 2 events 

• 1 action 
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“Canonical” ACO: issues 

• Number of vertices in the construction 

graph grows as (Nstates)
2×|Σ|×|Δ| 

• No meaningful way to define heuristic 

information 

• Later we show that “canonical” ACO is 

ineffective for FSM learning 
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Proposed algorithm: MuACOsm 

• Mutation-Based ACO for learning FSMs 

• Uses a non-standard problem reduction 

• Modified ACO 
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Problem reduction: MuACOsm 

vs. “canonical” 
• “Canonical” ACO 

– Nodes are solution components 

– Full solutions are built by ants 

• Proposed MuACOsm algorithm 

– Nodes are full solutions (FSMs) 

– Ants travel between full solutions 
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FSM Mutations 
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MuACOsm problem reduction 

• Construction graph 

– nodes are FSMs 

– edges are mutations of FSMs 

• Example 
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Real search space graph 
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Part of real search space (1) 
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Part of real search space (2) 
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Heuristic information 

u v
ηuv = max(ηmin, f(v) – f(u)) 

Finite-state machines 
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ACO algorithm 

A0 = random FSM 

Improve A0 with (1+1)-ES 

Graph = {A0} 

while not stop() do  

  ConstructAntSolutions 

  UpdatePheromoneValues 

  DaemonActions 
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Constructing ant solutions 

• Use a colony of ants 

• An ant is placed on a 

graph node 

• Each ant has a limited 

number of steps 

• On each step the ant 

moves to the next node 
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Ant step: selecting the next node 

Go to best mutated 
FSM 

 

Probabilistic 
selection 

P = Pnew 

P = 1 – Pnew 
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Pheromone update 

• Ant path quality = max fitness value on a path 

• Update        – largest pheromone value 

deployed on  edge (u, v) 

• Update pheromone values: 

 

 

 

•                  – pheromone evaporation rate 
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Differences from previous work 

• Added heuristic information 

• Changed start node selection for ants 

• Coupling with (1+1)-ES 

 

• More experiments (later) 

• More comparisons with other authors 

• Harder problem 
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“Simple” problem: Artificial Ant 

• Toroidal field N×N 

• M pieces of food 

• smax time steps 

• Fixed position of food 
and the ant 

• Goal – build an FSM, 
such that the ant will eat 
all food in K steps 

 

Field example: John Muir Trail 
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Artificial Ant: Fitness function 

max

lastmax
food

1

s

ss
nf




• nfood – number of eaten food pieces 

• smax – max number of allotted steps 

• slast – number of used steps 

f 

eaten food 

used time steps 
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“Simple” problem: Artificial Ant 

• Two fields: 

– Santa Fe Trail 

– John Muir Trail 

• Comparison: 

– “Canonical” ACO 

– Christensen et al. (2007) 

– Tsarev et al. (2007) 

– Chellapilla et al. (1999) 
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“Canonical” ACO 

“Canonical” 

ACO 

MuACOsm 

State 

count 

Success 

rate, % 

Success 

rate, % 

5 18 87 

10 10 91 
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Santa Fe Trail (Christensen et 

al., 600 steps) 
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John Muir Trail (Tsarev et al., 

2007): 200 steps 

• MuACOsm is 30 times faster for FSMs with 7 states 
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“Harder” problem: learning Extended 

Finite-State Machines (1) 
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Input data: 

• Number of states C and sets Σ and Δ 

• Set of test examples T 

• Ti =<input sequence Ij, output sequence  Oj> 

 

NP-hard problem: build an EFSM with C 

states compliant with tests T 

 

 

 

“Harder” problem: learning Extended 

Finite-State Machines (2) 
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Learning EFSMs: Fitness 

function 
• Pass inputs to EFSM, record outputs 

• Compare generated outputs with references 

• Fitness = string similarity measure (edit 

distance) 
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Experimental setup 

1. Generate random EFSM with C states 

2. Generate set of tests of total length C×150 

3. Learn EFSM 

4. Experiment for each C repeated 100 times 

5. Run until perfect fitness 

6. Record mean number of fitness evaluations 
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Learning random EFSMs 
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Conclusion 

• Developed new ACO-based algorithm for 

learning FSMs and EFSMs 

• MuACOsm greatly outperforms GA on 

considered problems 

• Generated programs can be verified with 

Model Checking 
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Future work 

• Better FSM representation to deal with 

isomorphism 

• Use novelty search 

• Employ verification in learning process 

Fitness 

Function

Model 

Checking

MuACOsm
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Thank you for your attention! 

Daniil Chivililikhin 

Vladimir Ulyantsev 
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