
MuACOsm – A New Mutation-Based

Ant Colony Optimization Algorithm

for Learning Finite-State Machines

Daniil Chivilikhin and Vladimir Ulyantsev

National Research University of IT, Mechanics and Optics

St. Petersburg, Russia

Evolutionary and Combinatorial Optimization Track @ GECCO 2013

July 8, 2013

Motivation: Reliable software

• Systems with high cost of failure

– Energy industry

– Aircraft industry

– Space industry

– …

• We want to have reliable software

– Testing is not enough

– Verification is needed

ACO for Learning FSMs 2

Introduction (1)

• Automated software engineering

• Model-driven development

• Automata-based programming

Software

specification
Model Code

ACO for Learning FSMs 3

Introduction (2)

Software

specification
Model Code

Finite-state

machine

ACO for Learning FSMs 4

Finite-State Machine

• S – set of states

• s0 ∈ S – initial state

• Σ – set of input events

• Δ – set of output actions

• δ: S×Σ→S – transition function

• λ: S×Σ→Δ – actions function

Example:

• two states

• events = {A, T}

• actions = {z1, z2, z3, z4}

2

A/z2

T/z1

1

A/z3

T/z3

ACO for Learning FSMs 5

Automated-controlled object

Finite-state

machine

Controlled

objectActions

Events

Automata-based programming

Design programs with

complex behavior as

automated-controlled

objects

e1

e2

z1

z3

Events
Output

actions

z2

z4

z2

ACO for Learning FSMs 6

Automata-based programming:

advantages
• Model before programming code, not vice

versa

• Possibility of program verification using

Model Checking

• You can check temporal properties (LTL)

Model Code

Finite-state machine

ACO for Learning FSMs 7

Issues

• Hard to build an FSM with desired

structure and behavior

• Several problems of learning FSMs were

proven to be NP-hard

• One of the solutions – metaheuristics

ACO for Learning FSMs 8

Software

specification

Test

examples

Modeling

environment

Fitness function

f: X → R

Learning finite-state machines with

metaheuristics

• Nstates – number of states

• Σ – input events

• Δ – output actions

• X = (Nstates, Σ, Δ) –

 search space

ACO for Learning FSMs 9

Approaches to learning FSMs

• Greedy heuristics

– problem-specific

• Reduction to SAT and CSP problems

– fast

– problem-specific

• Evolutionary algorithms (general)

– slow

 ACO for Learning FSMs 10

Proposed approach

• Based on Ant Colony Optimization (ACO)

• Non-standard problem reduction

• Modified ACO algorithm

ACO for Learning FSMs 11

Solution representation

Transition table Output table

δ Event λ Event

State A T State A T

1 1 2 1 z1 z2

2 2 1 2 z2 z3

ACO for Learning FSMs 12

“Canonical” way to apply ACO

• Reduce problem to finding a minimum cost
path in some complete graph

• Vertices – FSM transitions:

– <i ∈ S, j ∈ S, e ∈ Σ, a ∈ Δ>

• Each ant adds transitions to its FSM

ACO for Learning FSMs

1→1 [T/z1] 1→2 [A/z2]

13

“Canonical” ACO: example

• 2 states

• 2 events

• 1 action

ACO for Learning FSMs 14

“Canonical” ACO: issues

• Number of vertices in the construction

graph grows as (Nstates)
2×|Σ|×|Δ|

• No meaningful way to define heuristic

information

• Later we show that “canonical” ACO is

ineffective for FSM learning

ACO for Learning FSMs 15

Proposed algorithm: MuACOsm

• Mutation-Based ACO for learning FSMs

• Uses a non-standard problem reduction

• Modified ACO

ACO for Learning FSMs 16

Problem reduction: MuACOsm

vs. “canonical”
• “Canonical” ACO

– Nodes are solution components

– Full solutions are built by ants

• Proposed MuACOsm algorithm

– Nodes are full solutions (FSMs)

– Ants travel between full solutions

ACO for Learning FSMs 17

FSM Mutations

2

A/z2

T/z1

1

A/z3

T/z3

2

A/z2

T/z1

1

A/z1

T/z3

2

A/z2

T/z1

1

A/z3

T/z3

Change

transition action

Change transition

end state

ACO for Learning FSMs 18

MuACOsm problem reduction

• Construction graph

– nodes are FSMs

– edges are mutations of FSMs

• Example

ACO for Learning FSMs 19

Real search space graph

ACO for Learning FSMs 20

Part of real search space (1)

ACO for Learning FSMs 21

Part of real search space (2)

ACO for Learning FSMs 22

Heuristic information

u v
ηuv = max(ηmin, f(v) – f(u))

Finite-state machines

ACO for Learning FSMs 23

ACO algorithm

A0 = random FSM

Improve A0 with (1+1)-ES

Graph = {A0}

while not stop() do

 ConstructAntSolutions

 UpdatePheromoneValues

 DaemonActions

ACO for Learning FSMs 24

Constructing ant solutions

• Use a colony of ants

• An ant is placed on a

graph node

• Each ant has a limited

number of steps

• On each step the ant

moves to the next node

ACO for Learning FSMs

A

A4

A3

A2

A1

25

Ant step: selecting the next node

Go to best mutated
FSM

Probabilistic
selection

P = Pnew

P = 1 – Pnew






}4,3,2,1{ AAAAw

uwuw

uvuv

Av
p









A

f(A)=10

А4

f(A4)=9

A3

f(A3)=0

A2

f(A2)=12

A1

f(A1)=8Mutation

A

A4

A3

A2

A1

ACO for Learning FSMs 26

Pheromone update

• Ant path quality = max fitness value on a path

• Update – largest pheromone value

deployed on edge (u, v)

• Update pheromone values:

• – pheromone evaporation rate

best

uv
τ

best

uvuvuv
τ+τρ=τ)1(

 0,1ρ

ACO for Learning FSMs 27

Differences from previous work

• Added heuristic information

• Changed start node selection for ants

• Coupling with (1+1)-ES

• More experiments (later)

• More comparisons with other authors

• Harder problem

 ACO for Learning FSMs 28

“Simple” problem: Artificial Ant

• Toroidal field N×N

• M pieces of food

• smax time steps

• Fixed position of food
and the ant

• Goal – build an FSM,
such that the ant will eat
all food in K steps

Field example: John Muir Trail

ACO for Learning FSMs 29

Artificial Ant: Fitness function

max

lastmax
food

1

s

ss
nf




• nfood – number of eaten food pieces

• smax – max number of allotted steps

• slast – number of used steps

f

eaten food

used time steps

ACO for Learning FSMs 30

“Simple” problem: Artificial Ant

• Two fields:

– Santa Fe Trail

– John Muir Trail

• Comparison:

– “Canonical” ACO

– Christensen et al. (2007)

– Tsarev et al. (2007)

– Chellapilla et al. (1999)

ACO for Learning FSMs

Santa Fe Trail

31

“Canonical” ACO

“Canonical”

ACO

MuACOsm

State

count

Success

rate, %

Success

rate, %

5 18 87

10 10 91

ACO for Learning FSMs 32

Santa Fe Trail (Christensen et

al., 600 steps)

5000

7000

9000

11000

13000

15000

17000

19000

21000

5 7 9 11 13 15

F
it

n
e
s
s
 e

v
a
lu

a
ti

o
n

 c
o

u
n

t

Number of FSM states

MuACOsm Christensen et al

ACO for Learning FSMs 33

John Muir Trail (Tsarev et al.,

2007): 200 steps

• MuACOsm is 30 times faster for FSMs with 7 states

0

5

10

15

20

25

30

35

40

45

50

8 9 10 11 12 13 14 15 16

F
it

n
e
e
s
s
 e

v
a
lu

a
ti

o
n

 c
o

u
n

t

×106

Number of FSM states

MuACOsm Genetic algorithm

ACO for Learning FSMs 34

“Harder” problem: learning Extended

Finite-State Machines (1)

ACO for Learning FSMs 35

Input data:

• Number of states C and sets Σ and Δ

• Set of test examples T

• Ti =<input sequence Ij, output sequence Oj>

NP-hard problem: build an EFSM with C

states compliant with tests T

“Harder” problem: learning Extended

Finite-State Machines (2)

ACO for Learning FSMs 36

Learning EFSMs: Fitness

function
• Pass inputs to EFSM, record outputs

• Compare generated outputs with references

• Fitness = string similarity measure (edit

distance)

ACO for Learning FSMs 37

Experimental setup

1. Generate random EFSM with C states

2. Generate set of tests of total length C×150

3. Learn EFSM

4. Experiment for each C repeated 100 times

5. Run until perfect fitness

6. Record mean number of fitness evaluations

ACO for Learning FSMs 38

Learning random EFSMs

ACO for Learning FSMs 39

Conclusion

• Developed new ACO-based algorithm for

learning FSMs and EFSMs

• MuACOsm greatly outperforms GA on

considered problems

• Generated programs can be verified with

Model Checking

ACO for Learning FSMs 40

Future work

• Better FSM representation to deal with

isomorphism

• Use novelty search

• Employ verification in learning process

Fitness

Function

Model

Checking

MuACOsm

ACO for Learning FSMs 41

Acknowledgements

• We thank the ACM for the student travel

grants

ACO for Learning FSMs 42

Thank you for your attention!

Daniil Chivililikhin

Vladimir Ulyantsev

This presentation online:

http://rain.ifmo.ru/~chivdan/papers/2013/

gecco-2013-presentation.pdf

MuACOsm – A New Mutation-Based Ant Colony

Optimization Algorithm for Learning Finite-State Machines

chivdan@gmail.com

http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/gecco-2013-presentation.pdf

