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Motivation: Reliable software 

• Systems with high cost of failure 

– Energy industry 

– Aircraft industry 

– Space industry 

– … 

• We want to have reliable software 

– Testing is not enough 

– Verification is needed 
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Verification 

• Checking temporal rules (e.g. LTL) 

• Software verification can be harder than 

software development 

• Need to make software that satisfies LTL-

specification by design  

• How? 
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Model-driven development 

• Automated software engineering 

• Model-driven development 

Software

specification
Model Code
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Model-driven development 

Software

specification
Model Code

Finite-state 

machine 
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Finite-State Machine 

• Σ – set of input events 

• Δ – set of output actions 

• δ: S×Σ→S – transition function 

• λ: S×Σ→Δ – actions function 
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Automated-controlled object

Finite-state 

machine

Controlled 

objectActions

Events

Automata-based programming 

Design programs with 

complex behavior as 

automated-controlled 

objects 
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Automata-based programming: 

advantages 
• Model before programming code, not vice 

versa 

 

 

 

• Possibility of program verification using 

Model Checking 

• You can check temporal properties (LTL) 

 

Model Code

Finite-state machine
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Issues 

• Hard to build an FSM with desired 

structure and behavior 

• One of approaches – mutation-based 

metaheuristics 
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Mutation-based FSM learning 

• Evolution Strategies (ES) 

• Genetic Algorithms (GA) 

• Mutation-based Ant Colony Optimization 

(MuACO) 

 

All these algorithms use FSM mutations 

Learning FSMs: Conserving 

Fitness Evaluations 

12 



Mutation-Based Ant Colony 

Optimization 
• Proposed by the authors of this work in 

2012 

• Based on Ant Colony Optimization 

• Can be thought of as an ES “with 

memory” 

• No time to go into detail  
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Solution representation 

Transition table   Output table 

δ Event   λ Event 

State A T   State A T 

1 1 2   1 z1 z2 

2 2 1   2 z2 z3 
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FSM Mutations 
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Proposed idea 



Fitness evaluation: used transitions 
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Mutation 
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Mutate this 

transition 



Observation 
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Challenge 

OK, found a way not to calculate fitness of 

FSMs in some cases 

 

1.Can we design an efficient implementation? 

2.Will it make a difference in performance? 

3.Limits of applicability? 
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Implementation 

• Store an array of transition usage marks 

for each FSM 

• Mark used transitions during fitness 

evaluation 

• Copy marks when not calculating fitness 
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Domain knowledge 

• Black box – no domain knowledge 

• General domain knowledge about FSMs 

• Problem-specific domain knowledge 
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Experiments 
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Experiments: Purpose 

• Does it make a difference? 

• How much resources does it require? 
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Experiments: Algorithms 

• Evolutionary strategy (ES) 

• Genetic algorithm (GA) 

• Mutation-Based Ant Colony Optimization 

for learning FSMs (MuACOsm) 
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Experiments: Problems 

1. Artificial Ant Problem 

2. Learning EFSMs from tests 
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General experimental setup 

1. Tune each algorithm for time ttune 

– Using full factorial design of experiment 

2. Run each algorithm with tuned 

parameters 
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Artificial Ant Problem 

• Toroidal field N×N 

• M pieces of food 

• K time steps 

• Fixed position of food 
and the ant 

• Goal – build an FSM, 
such that the ant will eat 
all food in K steps 

 

Field example: John Muir Trail 
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Artificial Ant: Fitness function 

K

sK
nf

1last
food




• nfood – number of eaten food pieces 

• K – max number of allotted steps 

• slast – number of used steps 

f 

eaten food 

used time steps 
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Success rate 

• Successful run: fitness ≥ 89 

• Success rate = Nsuccesful runs / Nruns 
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Experiment design 

• Vary number of states 

• Limited number of fitness evaluations 

• Measure: 

– Success rate 

– Time 
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Success rate 
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ES median time 
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GA median time 
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MuACO median time 
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ES Fitness 
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GA Fitness 
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MuACO Fitness 
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Ratio of lazy evaluations 
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Fitness evaluation time: plain algorithms 
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Fitness evaluation time: with marking 
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Statistical Significance 

• ANOVA test 

• Fitness distributions significantly different 

for ES and MuACOsm 

• Insignificant for GA 
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Learning Extended Finite-State 

Machines from tests (1) 
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Input data: 

• Number of states C and sets Σ and Δ 

• Set of test examples T 

• Ti =<input sequence Ij, output sequence  Oj> 

 

NP-hard problem: build an EFSM with C 

states compliant with tests T 

 

 

 

Learning Extended Finite-State 

Machines from tests (2) 
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Example of a test 

A H T[x1] T[x1 & x2] → z1 z1 z2 z5 z7 
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Learning EFSMs: Fitness function 

• Pass inputs to EFSM, record outputs 

• Compare generated outputs with references 

• Fitness = string similarity measure (edit 

distance) 
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Experimental setup 

1. Generate random EFSM with C states 

2. Generate set of tests of total length C×150 

3. Learn EFSM from tests 

4. Experiment for each C repeated 100 times 

5. Limited number of fitness evaluations 
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Success rate 
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Mean fitness 
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Fitness evaluations 
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Median time 
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Time for fitness evaluation 

52 



Conclusion 

Developed approach 

– Applicable to all FSM learning algorithms that 

use mutations 

– Allows to explore more FSMs with the same 

number of fitness evaluations 

– Effectively improves fitness and time 
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Limitations 

• Makes sense to use if cost of fitness 

computation is relatively high 
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Future work 

Explore more ways of using domain knowledge 

in FSM learning algorithms 
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Thank you for your attention! 

Daniil Chivilikhin 

Vladimir Ulyantsev 

This presentation online: 

http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-

presentation.pdf 
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