

Learning Finite-State Machines: Conserving Fitness Evaluations by Marking Used Transitions

Daniil Chivilikhin and Vladimir Ulyantsev

National Research University of IT, Mechanics and Optics St. Petersburg, Russia

Machine Learning Applications in Software Engineering @ ICMLA'13

December 6, 2013

Outline

- Motivation and scope
- Proposed idea
- Experiments
 - Artificial Ant problem
 - Test-based EFSM induction
- Conclusion

Motivation and scope

Motivation: Reliable software

- Systems with high cost of failure
 - Energy industry
 - Aircraft industry
 - Space industry

. . .

- We want to have reliable software
 - Testing is not enough
 - Verification is needed

Verification

- Checking temporal rules (e.g. LTL)
- Software verification can be harder than software development
- Need to make software that satisfies LTLspecification by design
- How?

Model-driven development

- Automated software engineering
- Model-driven development

Finite-State Machine

- Σ set of input events
- Δ set of output actions
- $\delta: S \times \Sigma \rightarrow S$ transition function
- $\lambda: S \times \Sigma \rightarrow \Delta$ actions function

Automata-based programming

Design programs with complex behavior as automated-controlled objects

Automata-based programming: advantages

Model before programming code, not vice versa

- Possibility of program verification using
 Model Checking
- You can check temporal properties (LTL)

Issues

- Hard to build an FSM with desired structure and behavior
- One of approaches mutation-based metaheuristics

Mutation-based FSM learning

- Evolution Strategies (ES)
- Genetic Algorithms (GA)
- Mutation-based Ant Colony Optimization (MuACO)

All these algorithms use FSM mutations

Mutation-Based Ant Colony Optimization

- Proposed by the authors of this work in 2012
- Based on Ant Colony Optimization
- Can be thought of as an ES "with memory"
- No time to go into detail 🛞

Solution representation

Transition table			Output table			
δ	Event		λ	Event		
State	A	T	State	A	T	
1	1	2	1	<i>Z</i> ₁	<i>Z</i> ₂	
2	2	1	2	<i>Z</i> ₂	<i>Z</i> ₃	

Learning FSMs: Conserving Fitness Evaluations

FSM Mutations

Learning FSMs: Conserving Fitness Evaluations

Proposed idea

Fitness evaluation: used transitions

Challenge

OK, found a way not to calculate fitness of FSMs in some cases

1.Can we design an efficient implementation?2.Will it make a difference in performance?3.Limits of applicability?

Implementation

- Store an array of transition usage marks for each FSM
- Mark used transitions during fitness evaluation
- Copy marks when not calculating fitness

Domain knowledge

- Black box no domain knowledge
- General domain knowledge about FSMs
- Problem-specific domain knowledge

Experiments

Learning FSMs: Conserving Fitness Evaluations

Experiments: Purpose

- Does it make a difference?
- How much resources does it require?

Experiments: Algorithms

- Evolutionary strategy (ES)
- Genetic algorithm (GA)
- Mutation-Based Ant Colony Optimization for learning FSMs (MuACOsm)

Experiments: Problems

- 1. Artificial Ant Problem
- 2. Learning EFSMs from tests

General experimental setup

- 1. Tune each algorithm for time t_{tune}
 - Using full factorial design of experiment
- 2. Run each algorithm with tuned parameters

Artificial Ant Problem

- Toroidal field N×N
- M pieces of food
- Ktime steps
- Fixed position of food and the ant
- Goal build an FSM, such that the ant will eat all food in K steps

Field example: John Muir Trail

Artificial Ant: Fitness function

$$f = n_{\text{food}} + \frac{K - s_{\text{last}} - 1}{K}$$

- n_{food} number of eaten food pieces
- K max number of allotted steps
- s_{last} number of used steps

f \uparrow \leftarrow \leftarrow eaten food \downarrow used time steps Learning FSMs: Conserving

Success rate

- Successful run: fitness ≥ 89
- Success rate = N_{succesful runs} / N_{runs}

Experiment design

- Vary number of states
- Limited number of fitness evaluations
- Measure:
 - Success rate
 - Time

ES median time

GA median time

MuACO median time

Fitness evaluation time: plain algorithms

Fitness evaluation time: with marking

Statistical Significance

- ANOVA test
- Fitness distributions significantly different for ES and MuACOsm
- Insignificant for GA

Learning Extended Finite-State Machines from tests (1)

Learning Extended Finite-State Machines from tests (2)

Input data:

- Number of states C and sets Σ and Δ
- Set of test examples T
- $T_i = <$ input sequence I_{i} , output sequence $O_i >$

NP-hard problem: build an EFSM with C states compliant with tests T

Example of a test

$A H T[x_1] T[x1 \& x2] \rightarrow z_1 z_1 z_2 z_5 z_7$

Learning FSMs: Conserving Fitness Evaluations

Learning EFSMs: Fitness function

- Pass inputs to EFSM, record outputs
- Compare generated outputs with references
- Fitness = string similarity measure (edit distance)

$$f' = \frac{1}{|T|} \sum_{j=1}^{|T|} \left(1 - \frac{ED(O_j, A_j)}{\max(len(O_j), len(A_j))} \right)$$
$$f = 100 \cdot f' + \frac{1}{100} \cdot (100 - n_{trans})$$

Learning FSMs: Conserving Fitness Evaluations

Experimental setup

- 1. Generate random EFSM with C states
- 2. Generate set of tests of total length C×150
- 3. Learn EFSM from tests
- 4. Experiment for each C repeated 100 times
- 5. Limited number of fitness evaluations

Success rate

Mean fitness

Fitness evaluations

Conclusion

Developed approach

- Applicable to all FSM learning algorithms that use mutations
- Allows to explore more FSMs with the same number of fitness evaluations
- Effectively improves fitness and time

Limitations

 Makes sense to use if cost of fitness computation is relatively high

Future work

Explore more ways of using domain knowledge in FSM learning algorithms

Acknowledgements

- University ITMO research project 610455
- Ministry of Education and Science of Russian Federation in the framework of the federal program "Scientific and scientific-pedagogical personnel of innovative Russia in 2009-2013" (contract 16.740.11.0455, agreement 14.B37.21.0397)

Thank you for your attention!

Learning FSMs: Conserving Fitness Evaluations by Marking Used Transitions

Daniil Chivilikhin Vladimir Ulyantsev

{chivdan,ulyantsev}@rain.ifmo.ru

This presentation online: <u>http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-</u> presentation.pdf

> Learning FSMs: Conserving Fitness Evaluations

57

