
Learning Finite-State Machines:

Conserving Fitness Evaluations by

Marking Used Transitions

Daniil Chivilikhin and Vladimir Ulyantsev

National Research University of IT, Mechanics and Optics

St. Petersburg, Russia

Machine Learning Applications in Software Engineering @ ICMLA’13

December 6, 2013

Outline

• Motivation and scope

• Proposed idea

• Experiments

– Artificial Ant problem

– Test-based EFSM induction

• Conclusion

Learning FSMs: Conserving

Fitness Evaluations

2

Motivation and scope

3

Motivation: Reliable software

• Systems with high cost of failure

– Energy industry

– Aircraft industry

– Space industry

– …

• We want to have reliable software

– Testing is not enough

– Verification is needed

Learning FSMs: Conserving

Fitness Evaluations

4

Verification

• Checking temporal rules (e.g. LTL)

• Software verification can be harder than

software development

• Need to make software that satisfies LTL-

specification by design

• How?

Learning FSMs: Conserving

Fitness Evaluations

5

Model-driven development

• Automated software engineering

• Model-driven development

Software

specification
Model Code

Learning FSMs: Conserving

Fitness Evaluations

6

Model-driven development

Software

specification
Model Code

Finite-state

machine

Learning FSMs: Conserving

Fitness Evaluations

7

Finite-State Machine

• Σ – set of input events

• Δ – set of output actions

• δ: S×Σ→S – transition function

• λ: S×Σ→Δ – actions function

2

A/z2

T/z1

1

A/z3

T/z3

Learning FSMs: Conserving

Fitness Evaluations

8

Automated-controlled object

Finite-state

machine

Controlled

objectActions

Events

Automata-based programming

Design programs with

complex behavior as

automated-controlled

objects

e1

e2

z1

z3

Events
Output

actions

z2

z4

z2

Learning FSMs: Conserving

Fitness Evaluations

9

Automata-based programming:

advantages
• Model before programming code, not vice

versa

• Possibility of program verification using

Model Checking

• You can check temporal properties (LTL)

Model Code

Finite-state machine

Learning FSMs: Conserving

Fitness Evaluations

10

Issues

• Hard to build an FSM with desired

structure and behavior

• One of approaches – mutation-based

metaheuristics

Learning FSMs: Conserving

Fitness Evaluations

11

Mutation-based FSM learning

• Evolution Strategies (ES)

• Genetic Algorithms (GA)

• Mutation-based Ant Colony Optimization

(MuACO)

All these algorithms use FSM mutations

Learning FSMs: Conserving

Fitness Evaluations

12

Mutation-Based Ant Colony

Optimization
• Proposed by the authors of this work in

2012

• Based on Ant Colony Optimization

• Can be thought of as an ES “with

memory”

• No time to go into detail 

Learning FSMs: Conserving

Fitness Evaluations

13

Solution representation

Transition table Output table

δ Event λ Event

State A T State A T

1 1 2 1 z1 z2

2 2 1 2 z2 z3

Learning FSMs: Conserving

Fitness Evaluations

14

FSM Mutations

2

A/z2

T/z1

1

A/z3

T/z3

2

A/z2

T/z1

1

A/z1

T/z3

2

A/z2

T/z1

1

A/z3

T/z3

Change

transition action

Change transition

end state

Learning FSMs: Conserving

Fitness Evaluations

15

16

Proposed idea

Fitness evaluation: used transitions

Learning FSMs: Conserving

Fitness Evaluations

17

Calculated

fitness

Used

transitions

Mutation

Learning FSMs: Conserving

Fitness Evaluations

18

Mutate this

transition

Observation

Learning FSMs: Conserving

Fitness Evaluations

19

Mutation

Used

transition

Unused

transition

Fitness

has not

changed

Compute

fitness

Challenge

OK, found a way not to calculate fitness of

FSMs in some cases

1.Can we design an efficient implementation?

2.Will it make a difference in performance?

3.Limits of applicability?

Learning FSMs: Conserving

Fitness Evaluations

20

Implementation

• Store an array of transition usage marks

for each FSM

• Mark used transitions during fitness

evaluation

• Copy marks when not calculating fitness

Learning FSMs: Conserving

Fitness Evaluations

21

Domain knowledge

• Black box – no domain knowledge

• General domain knowledge about FSMs

• Problem-specific domain knowledge

Learning FSMs: Conserving

Fitness Evaluations

22

Experiments

Learning FSMs: Conserving

Fitness Evaluations

23

Experiments: Purpose

• Does it make a difference?

• How much resources does it require?

Learning FSMs: Conserving

Fitness Evaluations

24

Experiments: Algorithms

• Evolutionary strategy (ES)

• Genetic algorithm (GA)

• Mutation-Based Ant Colony Optimization

for learning FSMs (MuACOsm)

Learning FSMs: Conserving

Fitness Evaluations

25

Experiments: Problems

1. Artificial Ant Problem

2. Learning EFSMs from tests

Learning FSMs: Conserving

Fitness Evaluations

26

General experimental setup

1. Tune each algorithm for time ttune

– Using full factorial design of experiment

2. Run each algorithm with tuned

parameters

Learning FSMs: Conserving

Fitness Evaluations

27

Artificial Ant Problem

• Toroidal field N×N

• M pieces of food

• K time steps

• Fixed position of food
and the ant

• Goal – build an FSM,
such that the ant will eat
all food in K steps

Field example: John Muir Trail

Learning FSMs: Conserving

Fitness Evaluations

28

Artificial Ant: Fitness function

K

sK
nf

1last
food




• nfood – number of eaten food pieces

• K – max number of allotted steps

• slast – number of used steps

f

eaten food

used time steps

Learning FSMs: Conserving

Fitness Evaluations

29

Success rate

• Successful run: fitness ≥ 89

• Success rate = Nsuccesful runs / Nruns

Learning FSMs: Conserving

Fitness Evaluations

30

Experiment design

• Vary number of states

• Limited number of fitness evaluations

• Measure:

– Success rate

– Time

Learning FSMs: Conserving

Fitness Evaluations

31

Success rate

32

ES median time

33

GA median time

34

MuACO median time

35

ES Fitness

36

GA Fitness

37

MuACO Fitness

38

Ratio of lazy evaluations

39

Fitness evaluation time: plain algorithms

40

Fitness evaluation time: with marking

41

Statistical Significance

• ANOVA test

• Fitness distributions significantly different

for ES and MuACOsm

• Insignificant for GA

Learning FSMs: Conserving

Fitness Evaluations

42

Learning Extended Finite-State

Machines from tests (1)

Learning FSMs: Conserving

Fitness Evaluations

43

Input data:

• Number of states C and sets Σ and Δ

• Set of test examples T

• Ti =<input sequence Ij, output sequence Oj>

NP-hard problem: build an EFSM with C

states compliant with tests T

Learning Extended Finite-State

Machines from tests (2)

Learning FSMs: Conserving

Fitness Evaluations
44

Example of a test

A H T[x1] T[x1 & x2] → z1 z1 z2 z5 z7

Learning FSMs: Conserving Fitness

Evaluations
45

Learning EFSMs: Fitness function

• Pass inputs to EFSM, record outputs

• Compare generated outputs with references

• Fitness = string similarity measure (edit

distance)

Learning FSMs: Conserving

Fitness Evaluations
46

Experimental setup

1. Generate random EFSM with C states

2. Generate set of tests of total length C×150

3. Learn EFSM from tests

4. Experiment for each C repeated 100 times

5. Limited number of fitness evaluations

Learning FSMs: Conserving

Fitness Evaluations
47

Success rate

48

Mean fitness

49

Fitness evaluations

50

Median time

51

Time for fitness evaluation

52

Conclusion

Developed approach

– Applicable to all FSM learning algorithms that

use mutations

– Allows to explore more FSMs with the same

number of fitness evaluations

– Effectively improves fitness and time

Learning FSMs: Conserving

Fitness Evaluations

53

Limitations

• Makes sense to use if cost of fitness

computation is relatively high

Learning FSMs: Conserving

Fitness Evaluations

54

Future work

Explore more ways of using domain knowledge

in FSM learning algorithms

Learning FSMs: Conserving

Fitness Evaluations

55

Acknowledgements

• University ITMO research project 610455

• Ministry of Education and Science of Russian

Federation in the framework of the federal

program “Scientific and scientific-pedagogical

personnel of innovative Russia in 2009-2013”

(contract 16.740.11.0455, agreement

14.B37.21.0397)

Learning FSMs: Conserving

Fitness Evaluations

56

Thank you for your attention!

Daniil Chivilikhin

Vladimir Ulyantsev

This presentation online:

http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-

presentation.pdf

Learning FSMs: Conserving Fitness Evaluations by Marking

Used Transitions

{chivdan,ulyantsev}@rain.ifmo.ru

Learning FSMs: Conserving

Fitness Evaluations

57

http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-presentation.pdf
http://rain.ifmo.ru/~chivdan/papers/2013/icmla-2013-presentation.pdf

