Improving the Quality of Supervised Finite-State Machine Construction Using Real-Valued Variables

Igor Buzhinsky, Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev

Master student (2013-2015) ITMO University Computer Technologies Laboratory igor.buzhinsky@gmail.com

GECCO 2014, Student Workshop

July 12, 2014

We focus on finite-state machines (FSMs) for control tasks.

Why FSMs?

- Easy to comprehend and visualize
- ► Can be formally verified with the *Model Checking* approach Where FSMs can be applied?
 - ► Control systems: for energy, aircraft, space industries...
 - Where reliability is important

FSMs now:

- Quantum Leaps
- IEC 61499 standard for distributed PLC systems
- StateFlow for MATLAB

$\mathsf{FSM} = (S, s_0, E, A, \delta, \lambda)$

- ► *S* finite set of states
- ▶ s₀ initial state
- E event set
- A action set
- ► $\delta: S \times E \rightarrow S$ transition function
- $\lambda: S \times E \rightarrow A$ output function

Specification:

- Tests / scenarios, software traces
- Temporal properties (LTL, CTL formulae)
 - Example: $G((p \land \neg q) \rightarrow Xr)$

FSMs:

- Are software models
- Can be induced with metaheuristics (see Tsarev & Egorov, GECCO '11)
- Can be easily transformed into source code

Considered problem in brief

- Induce an FSM to control an object in a complex environment with continuous inputs and outputs
- ▶ in[i, t], out[i, t] training data (i = 1..N is a number of a test, t = 1..len[i] is a timestamp)
- The aircraft control problem is considered as an example (*FlightGear* simulator is used)
- Inputs correspond to sensor values, outputs correspond to control device positions
- Methodology:

FSM and aircraft interaction

Improving the Quality of Supervised Finite-State Machine Construction Using Real-Valued Variables July 12, 2014 6 / 24

-

Values	Description	t = 1	 t = 10	
$in[i, t]_1$	Pitch angle ($^\circ$)	3.078	 3.544	
$in[i, t]_2$	Roll angle (°)	-0.076	 0.351	
in[<i>i</i> , <i>t</i>] ₃	Heading (°)	198.03	 198.11	
in[<i>i</i> , <i>t</i>] ₄	Airspeed (knots)	251.42	 252.29	
$\operatorname{out}[i, t]_1$	Aileron position	0.000	 0.032	
$out[i, t]_2$	Rudder position	0.000	 0.016	
$out[i, t]_3$	Elevator position	-0.035	 -0.039	

Test example (4 inputs, 3 outputs)

Aircraft path examples (loop)

Improving the Quality of Supervised Finite-State Machine Construction Using Real-Valued Variables July 12, 2014 8 / 24

- A. Alexandrov, A. Sergushichev, S. Kazakov, F. Tsarev. Genetic algorithm for induction of finite automata with continuous and discrete output actions. GECCO '11 Companion, pp. 775–778. ACM, 2011.
 - GA, several hours to construct an FSM
 - Inputs are transformed to predicate values
 - Several transitions per time step (for each predicate)
 - Automatic output derivation
- I. Buzhinsky, V. Ulyantsev, A. Shalyto. Test-based induction of finite-state machines with continuous output actions. Proceedings of MIM '13, pp. 1049–1054. IFAC, 2013.
 - ACO, about 10 minutes to construct an FSM

Predicates for transitions:

- Example: p(input) = (input₂ < 3.6)</p>
- One transition per time step
- Only few ("significant") predicates are used in each state
- Example of a transition table:

Condition	$ eg p_1 \wedge p_3$	$ eg p_1 \wedge p_3$	$p_1 \wedge \neg p_3$	$p_1 \wedge p_3$
New state	2	4	1	1

Real-valued variables for output actions:

- Example: $v(input) = (input_1 0.5)^2$
- ► Action update: u'_i = u_i + ∑^k_{i=1} r_{s,i,j} v_i, where r_{s,i,j} are constant for a fixed FSM

Initial state

For each state:

- Mask of predicate significance
- Transition table for all combinations of values of significant predicates
- Mask of variable significance for each control device (output)

Actions (values $r_{s,i,j}$) are not included in individuals, but are derived using a procedure which reminds solving normal equation for linear regression. Linearity of the action update is important here.

Upper box: included in an individual

Predicate significance mask				Transition table (from the current state)					
p_1	p_2	p_3	p_4		$\neg p_1 \land \neg p_3$	¬p ₁ ,	p_3	p₁ ∧ ¬p₃	$p_1 \wedge p_3$
 	×	>	×		2	4		1	1
Variable significance mask for output 1				Variable significance mask for output 2					
V _{1,1}	V _{1,2}	V _{1,3}	V _{1,4}		V _{2,1}	V _{2,2}	V _{2,3}	V _{2,4}	V _{2,5}
×	v	X	v		U	×	×	X	
	-				•	~	~	~	•
	· · ·		· · · ·		•	~	~	~	
	Output	action 1	•			<u>л</u> Ог	itput acti	ion 2	
r _{s, 1, 1}	Output a	action 1 r _{s, 3, 1}	r _{s, 4, 1}		r _{s, 1, 2}	Ou r _{s, 2, 2}	Itput acti	ion 2	r _{s, 5, 2}
<i>r</i> _{s, 1, 1} 0	Output <i>r</i> _{s, 2, 1} 1.2	action 1	<i>r</i> _{s, 4, 1} 0.3		<i>r</i> _{s, 1, 2} 3.7	Ou <i>r</i> _{s, 2, 2} 0	tput acting $r_{s, 3, 2}$	$r_{s, 4, 2}$	<i>r</i> _{s, 5, 2} -0.3
r _{s, 1, 1} 0 Δι	Output a $r_{s, 2, 1}$ 1.2 $u_1 = 1.2 v_1$	action 1 $r_{s, 3, 1}$ 0 $r_{s, 2} + 0.3 V_1$	<i>r</i> _{s, 4, 1} 0.3		<i>r</i> _{s, 1, 2} 3.7	Ου $r_{s, 2, 2}$ 0 Δ $u_2 = 3$	ntput acti r _{s, 3, 2} 0 3.7 v _{2, 1} -	$ \begin{array}{c c} r_{s,4,2} \\ \hline \\ 0 \\ \hline \\ 0.3 \\ V_{2,5} \\ \end{array} $	r _{s, 5, 2} -0.3

Lower box: derived for each individual

FSM example (transition graph)

Example for 3 predicates, 3 variables, and one output u

Similar masks and actions in each state

- Fitness function: $f = 1 P_{\rho} P_{\tau}$
- ▶ P_ρ: penalty for the distances between the reference outputs (out[i, t]) and the outputs produced by the individual, executed on tests
- ▶ P_{\tau}: penalty for state changes (an FSM with clearly distinct states is better)
- f is maximized for each individual

- ACO-based algorithm
- D. Chivilikhin, V. Ulyantsev. MuACOsm – a new mutation-based ant colony optimization algorithm for learning finite-state machines.
 Proceedings of GECCO '13, pp. 511–518. ACM, 2013.
- Uses only mutations
- Simplification: pheromone removed
- Parameters were tuned with *irace*

Experimental setup

- Proposed FSM representation (induced with the modified fitness function) vs. Alexandrov et al.
- ► 50 ACO executions for each combination of the FSM representation, number of states |S| = 3, 4, 5 and test set (loop, barrel roll, turn)
- Termination criterion: stagnation after 5000 fitness evaluations
- About 10 minutes for each execution on a quad-core computer
- Individual with maximum value of f for each execution was run in simulation 10 times
- Roll and pitch quality metrics were compared across the representations

S	FSM Representation	Loop	Barrel roll	Turn
3	Proposed	0.9856	0.9854	0.9892
	Previous	0.9812	0.9832	0.9894
4	Proposed	0.9866	0.9863	0.9898
	Previous	0.9836	0.9856	0.9901
5	Proposed	0.9873	0.9868	0.9901
	Previous	0.9842	0.9858	0.9902

Median fitness values for different test sets and number of states

<i>S</i>	FSM Representation	Loop	Barrel roll	Turn
3	Proposed	1.71/17.21	16.52/3.20	4.80/1.95
	Previous	6.37/20.54	18.56/4.44	50.29/7.58
Λ	Proposed	2.41/23.04	15.35/2.51	4.10/1.42
-	Previous	6.32/22.11	21.86/4.08	57.04/6.79
Б	Proposed	3.21/25.27	14.74/2.43	4.07/1.36
5	Previous	9.54/24.44	22.99/4.68	45.83/7.83

Median roll/pitch errors (°) for different test sets and number of states

A screenshot (loop, FlightGear simulator)

< 口 > < 同

A screenshot (180° turn, FlightGear simulator)

< 口 > < 同

- A new representation method for FSMs with continuous inputs and outputs
- Automatic output derivation for the new representation
- A known fitness function was modified to get more comprehensible FSMs
- Simulation quality of FSMs was improved

- Automatic construction of predicates and variables
- Testing the approach in different environments (e.g. robot simulators)
- Involving more types of specification (including temporal properties)

Our posters

23 / 24

Improving the Quality of Supervised Finite-State Machine Construction Using Real-Valued Variables July 12, 2014

Thank you for your attention! Any questions?

Improving the Quality of Supervised Finite-State Machine Construction Using Real-Valued Variables

Igor Buzhinsky, Daniil Chivilikhin, Vladimir Ulyantsev, Fedor Tsarev igor.buzhinsky@gmail.com

> This presentation online: http://goo.gl/k4yCqG