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Problem statement

Develop a method for 

automated controller generation 

for

MVC applications
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Implementation: IEC 61499 function blocks

Execution Control Chart (ECC)Function block interface
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IEC 61499 Execution Control Chart 
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IEC 61499 Execution Control Chart 

Guard conditions

Boolean formulas

input/output variables

internal variables

constants
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IEC 61499 Execution Control Chart 

Algorithms

Change output variables
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Assumptions and simplifications

Model and View are implemented

Only Boolean input/output variables

Guard conditions – only input variables
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Proposed approach
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HMI generation
M.I: Model’s inputs that 
should be set by Controller

M.O: Model’s outputs to 
be used in controller
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Refactored MVC scheme
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Execution scenario
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Recording execution scenarios

Automated refactoring

Dummy function block
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ECC construction algorithm: previous work

Metaheuristic algorithm
• Chivilikhin et al. Reconstruction of Function Block Logic using 

Metaheuristic Algorithm: Initial Explorations / In Proceedings of the 
13th IEEE International Conference on Industrial Informatics 
(INDIN'15)

No theoretical bounds on running time

In one special case we can do better!
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Exact ECC construction

If each algorithm is used 
in exactly one state

We can determine 
algorithms automatically

And then construct the 
ECC

+ only for Boolean 
inputs/outputs!

16/33



Proposed ECC construction algorithm

1. Determine minimal set of state 
algorithms

2. Construct ECC from scenarios labeled by 
found algorithms

3. Simplify ECC
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Algorithm representation

Algorithms are strings 
over {‘0’, ‘1’, ‘x’}

ai=‘0’: set zi=0

ai=‘1’: set zi=1

ai=‘x’: preserve value of zi

Example
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Determine initial set of simple algorithms

For each scenario s and each 
pair of elements si and si+1

Calculate algorithm a for 
transforming si → si+1

Function calcAlg(si ,si+1)

Example
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Determine initial set of simple algorithms
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Merge algorithms

Function merge(a, b) Example
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Only consistent algorithms are merged

Algorithms are consistent if they don’t have 
contradicting elements

0 x 1 0

1 1 1 x

contradiction
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Checking if merge is valid

Invariant: algorithms 
are sufficient to 
represent all scenarios

For each scenario s

For each si and si+1

A’ ← A \ {a, b}

A’ ← A’ U {mab}

if A’ satisfies invariant

then A ← A’

out.)out.,(applyAlg:
1


ii

ssaAa
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Merging algorithms: pseudocode

Try to merge each pair of 
algorithms

Until no more merges can 
be made
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Constructing ECC using found algorithms
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Constructing ECC using found algorithms
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Simplifying ECC

Constructed ECCs are redundant

Each guard depends on all input variables

6 -> 5 ["REQ [c1Home & !c1End & vcEnd & !pp2]"];
6 -> 5 ["REQ [c1Home & !c1End & vcEnd & pp2] "];
7 -> 0 ["REQ [vcHome & !vac]"];
7 -> 3 ["REQ [vcHome & vac]"];
8 -> 7 ["REQ [!c1End & c2End]"];
8 -> 7 [“REQ [c1End & !c2End]"];
8 -> 7 ["REQ [c1End & c2End]"];
9 -> 1 [“REQ [c2End & vcHome & !vac]"];

6 -> 5 ["REQ [vcEnd]"];
7 -> 0 ["REQ [vcHome & !vac]"];
7 -> 3 ["REQ [vcHome & vac]"];
8 -> 7 ["REQ [!c2End]"];
8 -> 7 ["REQ [c2End]"];
9 -> 1 ["REQ [c2End]"];

27/33



Experiments: Pick-n-Place manipulator
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Experiment setup

10 tests: order of work piece deployment

• 1, 1-2, 2-3, 1-2-3, 2, 2-1, 2-3, 3-2, 3-2-1
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Experiment protocol

Record scenarios

Construct ECC

Simulate in FBDK

Convert to Java 
& compile
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Results

Proposed method constructs the ECC in less than a minute

Previous method required ~ 4.5 hours on 16-core machine

Simulation showed that the ECC works correctly
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Limitations & Future work

Approach is only useful if manual control is easier 
than designing the ECC

User bears all responsibility for scenario correctness 
and completeness

What about generalizing?

• Consider temporal properties
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