
Inferring Automation Logic from Manual Control 
Scenarios: Implementation in Function Blocks

DIAS@ISPA ’15, Helsinki, Finland, August 21, 2015

Daniil Chivilikhin

PhD student

ITMO University

Anatoly Shalyto

Dr. Sci., professor

ITMO University

Valeriy Vyatkin
Dr. Eng., professor,

Aalto University,
Luleå University of Technology



1. View

MVC application engineering

2/33

2. Model

use to debug

3. Controller



1. View

MVC application engineering

3/33

2. Model

use to debug

3. Automated 
controller
generation

4. Controller



Problem statement

Develop a method for 

automated controller generation 

for

MVC applications

4/33



Implementation: IEC 61499 function blocks

Execution Control Chart (ECC)Function block interface

5/33



IEC 61499 Execution Control Chart 

6/33

states



IEC 61499 Execution Control Chart 

Guard conditions

Boolean formulas

input/output variables

internal variables

constants

7/33



IEC 61499 Execution Control Chart 

Algorithms

Change output variables

8/33



Assumptions and simplifications

Model and View are implemented

Only Boolean input/output variables

Guard conditions – only input variables

9/33



Proposed approach

10/33



HMI generation
M.I: Model’s inputs that 
should be set by Controller

M.O: Model’s outputs to 
be used in controller

11/33



Refactored MVC scheme

12



Execution scenario

13/33

s0 s1 s2 s3 s4 s5

Input 
event

Input
variables

Output 
variables

Output 
event

REQ 01011010 101010 CNF



Recording execution scenarios

Automated refactoring

Dummy function block

14/33



ECC construction algorithm: previous work

Metaheuristic algorithm
• Chivilikhin et al. Reconstruction of Function Block Logic using 

Metaheuristic Algorithm: Initial Explorations / In Proceedings of the 
13th IEEE International Conference on Industrial Informatics 
(INDIN'15)

No theoretical bounds on running time

In one special case we can do better!

15/33



Exact ECC construction

If each algorithm is used 
in exactly one state

We can determine 
algorithms automatically

And then construct the 
ECC

+ only for Boolean 
inputs/outputs!

16/33



Proposed ECC construction algorithm

1. Determine minimal set of state 
algorithms

2. Construct ECC from scenarios labeled by 
found algorithms

3. Simplify ECC

17/33



Algorithm representation

Algorithms are strings 
over {‘0’, ‘1’, ‘x’}

ai=‘0’: set zi=0

ai=‘1’: set zi=1

ai=‘x’: preserve value of zi

Example

18/33

x 1 0 1

0 1 1 0

0 1 0 1

a

z

a(z)



Determine initial set of simple algorithms

For each scenario s and each 
pair of elements si and si+1

Calculate algorithm a for 
transforming si → si+1

Function calcAlg(si ,si+1)

Example

























.10if,1

;01if,0

;if,

1

1

1

j

i

j

i

j

i

j

i

j

i

j

i

i

ss

ss

ssx

a

0 1 0 1

0 1 1 0

x x 1 0

si

si+1

a

19/33



Determine initial set of simple algorithms

20/33



Merge algorithms

Function merge(a, b) Example













.if,

;if,

xbxax

baa

m

jj

jjjab

j

0 x 1 0

0 1 1 x

0 x 1 x

a

b

mab

21/33



Only consistent algorithms are merged

Algorithms are consistent if they don’t have 
contradicting elements

0 x 1 0

1 1 1 x

contradiction

22/33



Checking if merge is valid

Invariant: algorithms 
are sufficient to 
represent all scenarios

For each scenario s

For each si and si+1

A’ ← A \ {a, b}

A’ ← A’ U {mab}

if A’ satisfies invariant

then A ← A’

out.)out.,(applyAlg:
1


ii

ssaAa

23/33



Merging algorithms: pseudocode

Try to merge each pair of 
algorithms

Until no more merges can 
be made

24/33



Constructing ECC using found algorithms

25/33



Constructing ECC using found algorithms

26/33



Simplifying ECC

Constructed ECCs are redundant

Each guard depends on all input variables

6 -> 5 ["REQ [c1Home & !c1End & vcEnd & !pp2]"];
6 -> 5 ["REQ [c1Home & !c1End & vcEnd & pp2] "];
7 -> 0 ["REQ [vcHome & !vac]"];
7 -> 3 ["REQ [vcHome & vac]"];
8 -> 7 ["REQ [!c1End & c2End]"];
8 -> 7 [“REQ [c1End & !c2End]"];
8 -> 7 ["REQ [c1End & c2End]"];
9 -> 1 [“REQ [c2End & vcHome & !vac]"];

6 -> 5 ["REQ [vcEnd]"];
7 -> 0 ["REQ [vcHome & !vac]"];
7 -> 3 ["REQ [vcHome & vac]"];
8 -> 7 ["REQ [!c2End]"];
8 -> 7 ["REQ [c2End]"];
9 -> 1 ["REQ [c2End]"];

27/33



Experiments: Pick-n-Place manipulator

28/33



Experiment setup

10 tests: order of work piece deployment

• 1, 1-2, 2-3, 1-2-3, 2, 2-1, 2-3, 3-2, 3-2-1

29/33



Experiment protocol

Record scenarios

Construct ECC

Simulate in FBDK

Convert to Java 
& compile

30/33



Results

Proposed method constructs the ECC in less than a minute

Previous method required ~ 4.5 hours on 16-core machine

Simulation showed that the ECC works correctly

31/33



Limitations & Future work

Approach is only useful if manual control is easier 
than designing the ECC

User bears all responsibility for scenario correctness 
and completeness

What about generalizing?

• Consider temporal properties

32/33



Acknowledgements

This work was financially supported by the 
Government of Russian Federation, Grant 074-U01.

33/33



Thank you for your attention!

rain.ifmo.ru/~chivdan


