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IEC 61499 function blocks

Execution Control Chart (ECC)Function block interface
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Motivation
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Chivilikhin D. et al. Reconstruction of Function Block Logic using 
Metaheuristic Algorithm: Initial Explorations / In Proceedings of INDIN'15

Previous work: Test-based FB reconstruction
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Test-based FB reconstruction
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Recording execution scenarios

Automated refactoring

Original function block
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Solution representation

FB inference with testing and verification
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Inference algorithm (1)

•Parallel MuACO algorithm [Chivilikhin et al, 2014]
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Inference algorithm (2)

1. Start with random solution

2. Build new solutions with mutation operators

3. Evaluate new solutions with fitness function
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Black-box inference

Issue with previous approach

How do we ensure sufficient coverage?
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Proposal

• Use Temporal Logic formulas as input
• We assume that these temporal properties 

cover the most important functionality of the FB
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Fitness function

Essence of the approach
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Which temporal logic to use?

• Linear temporal logic

• NuSMV is used for formula verification
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Closed-loop verification

Issues
•We need the model of the plant
•Verification will take a lot of time

•e.g., verification of PnP properties takes several 
hundred seconds

Build controller 
model

Build plant 
model

Verify whole 
system in a 
closed loop
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Closed-loop  verification with surrogate 
plant model

• Solution – create small surrogate model

• Use the model for FB synthesis

• “+”: fast verification

• “-”: it may be nontrivial to create the model
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Algorithmic ideas

How can we use this information for FB synthesis?

1. Ratio of satisfied formulas

2. Longest counterexample length

3. Verification-aware mutation operator

LTL formula f NuSMV
counterexample

f is satisfied
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1. Ratio of satisfied formulas

Issue – this variable has too few possible values!

# of satisfied formulas

# of formulas
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2. Length of the longest counterexample

• Solutions with long counterexamples are probably 
better than solutions with short ones
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3. Verification-aware mutation operator

LTL formula f NuSMV Counterexample

1
2

3
4

Increase probability of 
changing visited transitions
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Efficiency issues

•Closed-loop with surrogate model is fast, but not fast 
enough

•Verification takes ~ 0.5-1 seconds

Solution

•Calculate verification-based fitness only for p % of 
solutions

•Definitely calculate for good solutions
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Example: Pick-and-Place manipulator

22/27

FB inference with testing and verification



Considered LTL properties

Property Description

G(not (c
1
Extend & c

1
Retract)) Cylinder I must never be given 

commands to extend and retract 
simultaneously

G(not (c
2
Extend & c

2
Retract)) Analogous safety property about 

cylinder II

G(pp
1
  → not F(vp

1
)) If a work piece appears on the 

first input track, it will eventually 
be picked up by the manipulator
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Experiments

•Machine with 64-core AMD OpteronTM6378 @ 2.4 
GHz processor, 32 Gb of RAM

•Used 16 cores
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Conclusion

•Developed method of FB inference from tests and 
LTL properties

•Demonstrated viability on the PnP example

•Still a long way to go…
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Ongoing work: CSP-based inference

Function 
block 

inference 
problem

Constraint 
satisfaction 

problem
CSP-solver FB

Advantages

• Typically  – very fast

• Possibility to find all solutions

•Symmetry breaking

• Indirect solution of  “tests + LTL” synthesis problem
26/27

FB inference with testing and verification



Acknowledgements

• Financially supported by Government of Russian 
Federation, Grant 074-U01.

• Partially funded by RFBR according to the research 
project No. 16-37-00205 mol_a.

27/27

FB inference with testing and verification



Thank you for your attention!

rain.ifmo.ru/~chivdan


