
Reconstruction of Function Block Controllers Based
on Test Scenarios and Verification

INDIN ’16, Futuroscope-Poitiers, France, July 19, 2016

Daniil Chivilikhin
PhD

ITMO University

Anatoly Shalyto
Dr. Sci., professor
ITMO University

Valeriy Vyatkin
Dr. Eng., professor,

Aalto University,
Luleå University
of Technology

Ilya Ivanov
Undergrad student

ITMO University

IEC 61499 function blocks

Execution Control Chart (ECC)Function block interface

2/27

FB inference with testing and verification

Motivation

3/27

Legacy
application

Source
code

New
source
code

Chivilikhin D. et al. Reconstruction of Function Block Logic using
Metaheuristic Algorithm: Initial Explorations / In Proceedings of INDIN'15

Previous work: Test-based FB reconstruction

4/27

FB inference with testing and verification

Test-based FB reconstruction

5/27

FB inference with testing and verification

Execution
scenarios

Search-based
Inference

Test cases

Instrumented
function

blockR
ef

ac
to

rin
g

Execution
scenarios

Human
designer

S
im

ul
at

io
n

Execution scenario

s
0

s
1

s
2

s
3

s
4

s
5

Input
event

Input
variables

Output
variables

Output
event

REQ 01011010 101010 CNF

6/27

FB inference with testing and verification

Recording execution scenarios

Automated refactoring

Original function block

7/27

FB inference with testing and verification

Solution representation

FB inference with testing and verification

8/27

Inference algorithm (1)

•Parallel MuACO algorithm [Chivilikhin et al, 2014]

9/27

FB inference with testing and verification

Start
Generate

new
solutions

Solution
evaluation Result

Fitness function

Satisfies
condition?

Yes

No

Inference algorithm (2)

1. Start with random solution

2. Build new solutions with mutation operators

3. Evaluate new solutions with fitness function

10/27

FB inference with testing and verification

Black-box inference

Issue with previous approach

How do we ensure sufficient coverage?

11/27

FB inference with testing and verification

Inputs Outputs

Proposal

• Use Temporal Logic formulas as input
• We assume that these temporal properties

cover the most important functionality of the FB

12/27

FB inference with testing and verification

Execution
scenarios

Search-based
Inference

Temporal
formulas

Fitness function

Essence of the approach

13/27

FB inference with testing and verification

Candidate solution Testing

Verification

Fitness
value

Which temporal logic to use?

• Linear temporal logic

• NuSMV is used for formula verification

14/27

FB inference with testing and verification

Closed-loop verification

Issues
•We need the model of the plant
•Verification will take a lot of time

•e.g., verification of PnP properties takes several
hundred seconds

Build controller
model

Build plant
model

Verify whole
system in a
closed loop

15/27

FB inference with testing and verification

Closed-loop verification with surrogate
plant model

• Solution – create small surrogate model

• Use the model for FB synthesis

• “+”: fast verification

• “-”: it may be nontrivial to create the model

16/27

FB inference with testing and verification

Algorithmic ideas

How can we use this information for FB synthesis?

1. Ratio of satisfied formulas

2. Longest counterexample length

3. Verification-aware mutation operator

LTL formula f NuSMV
counterexample

f is satisfied

17/27

FB inference with testing and verification

1. Ratio of satisfied formulas

Issue – this variable has too few possible values!

of satisfied formulas

of formulas

18/27

FB inference with testing and verification

2. Length of the longest counterexample

• Solutions with long counterexamples are probably
better than solutions with short ones

19/27

FB inference with testing and verification

3. Verification-aware mutation operator

LTL formula f NuSMV Counterexample

1
2

3
4

Increase probability of
changing visited transitions

20/27

FB inference with testing and verification

Efficiency issues

•Closed-loop with surrogate model is fast, but not fast
enough

•Verification takes ~ 0.5-1 seconds

Solution

•Calculate verification-based fitness only for p % of
solutions

•Definitely calculate for good solutions

21/27

FB inference with testing and verification

Example: Pick-and-Place manipulator

22/27

FB inference with testing and verification

Considered LTL properties

Property Description

G(not (c
1
Extend & c

1
Retract)) Cylinder I must never be given

commands to extend and retract
simultaneously

G(not (c
2
Extend & c

2
Retract)) Analogous safety property about

cylinder II

G(pp
1
 → not F(vp

1
)) If a work piece appears on the

first input track, it will eventually
be picked up by the manipulator

23/27

FB inference with testing and verification

Experiments

•Machine with 64-core AMD OpteronTM6378 @ 2.4
GHz processor, 32 Gb of RAM

•Used 16 cores

24/27

FB inference with testing and verification

Conclusion

•Developed method of FB inference from tests and
LTL properties

•Demonstrated viability on the PnP example

•Still a long way to go…

25/27

FB inference with testing and verification

Ongoing work: CSP-based inference

Function
block

inference
problem

Constraint
satisfaction

problem
CSP-solver FB

Advantages

• Typically – very fast

• Possibility to find all solutions

•Symmetry breaking

• Indirect solution of “tests + LTL” synthesis problem
26/27

FB inference with testing and verification

Acknowledgements

• Financially supported by Government of Russian
Federation, Grant 074-U01.

• Partially funded by RFBR according to the research
project No. 16-37-00205 mol_a.

27/27

FB inference with testing and verification

Thank you for your attention!

rain.ifmo.ru/~chivdan

