
INDIN’2017

Plant trace generation for formal plant
model inference: methods and case study

Dmitry Avdyukhin, Daniil Chivilikhin, Georgiy Korneev,
Vladimir Ulyantsev, Anatoly Shalyto

Emden, Germany, 25 July 2017

Cyber-physical systems correctness

2/28

Cyber Physical

Actuators

Sensors

https://i.ytimg.com/vi/zhBxfNm3rJE/maxresdefault.jpg

Cyber-physical systems correctness

3/28

Cyber Physical

Actuators

Sensors

https://i.ytimg.com/vi/zhBxfNm3rJE/maxresdefault.jpg

Testing + Simulation + Verification

Cyber-physical systems correctness

4/28

Cyber Physical

Actuators

Sensors

https://i.ytimg.com/vi/zhBxfNm3rJE/maxresdefault.jpg

CPS verification

5/28

Controller
discrete,
simple

Plant
continuous,

complex

CPS verification

6/28

Controller
discrete,
simple

Plant
continuous,

complex

Formal model
of controller

Open-loop

CPS verification

7/28

Controller
discrete,
simple

Plant
continuous,

complex

Formal model
of controller

Formal model
of controller

Formal model
of plant

Open-loop Closed-loop

CPS verification

8/28

Open-loop: controller only Closed-loop: plant + controller

● Restriction on checked
properties

● State explosion
● Often “incorrect” results

because of unrealistic
input

● Correctness of the entire
system

● Requires plant model

Automatic plant model inference

9/28
[Buzhinsky, Vyatkin / INDIN’16]

Automatic plant model inference

10/28
[Buzhinsky, Vyatkin / INDIN’16]

?

Goals

• Propose and analyze plant trace generation
methods

• Applicable to wide range of systems

• Provide good coverage of plant behavior

11/28

Pipeline (1)

12/28

Traces
Randomized

Controller

Controller Plant

Simulation

Inputs

Outputs

Pipeline (2)

13/28

Traces

Training
set

Test set

Plant model

System
properties
verification

Closed-loop
properties

CTL
properties

Conformance
to traces

Usage

Validation

Plant model generation from traces

• Moore machine

• Transition labels are different input
combinations

• At most one state for each output combination

• Discretization

• [0; 100] → {0} ∪ (0; 100) ∪ {100}

14/28

• Only states and transitions encountered in traces

• “Unsupported” transitions to accept all inputs

Explicit-state plant model generation

15/28

Constraint-based plant model generation

• Variable for each input and output

• Each pair of variables can only have values found in traces

• o
1
=0 ∧ o

2
=T

• o
2
=T → next(o

2
)=F

• i
1
=0 → next(o

1
)=0

• Changeability constraint

• “Some output will eventually change”

• To avoid eternal loops

16/28

Proposed trace generation methods
1. Random controller

a. Generate random inputs each cycle

2. “Semirandom(C)” controller

a. Generate random inputs and do not change them until C
cycles pass or some output changes

b. Allows to visit rare states

3. Uniform inputs coverage

a. The probability to take a certain value is inversely
proportional to its frequency in traces

17/28

Case study: elevator

• Inputs

• Up, Down

• OpenDoor0..2

• Outputs

• Button0..2 ∊ {0, 1}

• Floor0..2 ∊ {0, 1}

• Closed0..2 ∊ {0, 1}

• Position ∊ ℝ

18/28

Model conformance to traces

• Is the trace accepted by the model?

• Is the model general enough?

• (O
1
, I

1
), (O

1
, I

2
), …, (O

n
, I

n
)

→ EF(O
1
 ∧ I

1
 ∧ EX(O

2
 ∧ I

2
 ∧ EX(O

3
 ∧

...)))

• Cross-check conformance to traces generated by
different methods

19/28

Conformance to traces

• Training set is always accepted

20/28

Conformance to traces

• Training set is always accepted

• Original model is not general enough

21/28

Conformance to traces

• Training set is always accepted

• Original model is not general enough

• Semirandom(100) > Semirandom(10) > Random = Semirandom(1)

22/28

Conformance to traces

• Training set is always accepted

• Original model is not general enough

• Semirandom(100) > Semirandom(10) > Random = Semirandom(1)

• Explicit-state models – never 100%

23/28

24/28

Property Meaning Corr Calc

G(Floor1 ∧ G ¬Up
∧ G(Down ∨
Floor0) → G
¬Floor2)

If the car is on the first floor
and never moves up and
always moves down or stays
on floor 0, it will never reach
floor 2

+ +

G(Pos = 4 ∧ Down
∧ ¬Up → X Pos = 3)

If the car stays on floor 2 and
moves down, it will be
between floors 1 and 2

+ +

System properties verification

25/28

Modifications of constraint-based
plant generation method

• Constraints of form O
i
 ∧ I

j
 → next(O

i
)

• Grouping of related inputs, such as (Up, Down)

• Changeability constraint

• G F ¬Down is true – restriction on inputs

• Some correct behavior is prohibited

• Solution:

• Will eventually reach the end

• When output depends on single input

• Special case: if i
k

 = v then o
j
 increases

26/28

Verification: different trace
generation methods

• Original: does not allow unusual behavior

• Random, Semirandom and Uniform – similar results

• Explicit state violates some properties

• Unsupported transitions are bad

• Constraint-based: after proposed modifications all
verification results are correct

27/28

Conclusion

• Trace generation methods are proposed

• Random – does not reach rare states

• Semirandom – good results

• Uniform – not different from semirandom

• Plant model generation methods modification

• Constraints of form O
i
 ∧ I

j
 → next(O

i
)

• Input grouping

• Additional fairness constraints

28/28

Thank you for your attention!

chivdan@rain.ifmo.ru

Acknowledgements

This work was supported by the Ministry of Education and Science of the Russian
Federation, project RFMEFI58716X0032

Emden, Germany, 2017

