
CSP-based inference of function block
finite-state models from execution traces

INDIN 2017, Emden, Germany

 25 July 2017

Daniil Chivilikhin, Vladimir Ulyantsev, Anatoly Shalyto, Valeriy Vyatkin

Program synthesis

2/25

● Derive implementation from examples/specification

○ From seminal work [A. Church, 1963]

● Motivation

○ Fundamental in computer science

○ Automation of software engineering

■ Reverse engineering

Specification/
examples Implementation

Synthesis

EXESRC SRC

Reverse engineering of software

3/25

● Rights limitations
● Changing standards
● ….

● Understanding
● Optimization
● Verification
● ….

Black-box approach

What’s in the box?

4/25

(Controller)
EXE SRC

Target language: IEC 61499 function blocks

5/25

Test-based reverse engineering

6/25

Tests

Simulation

Execution
traces Model

Tests
gen

Model
inference

Preparation

Scenarios

7/25

Input
Event

Input vars
values

Output
Event

Output vars
values

Basic function block model

Boolean input/output vars

8/25

Previous/proposed approaches

1. Metaheuristic: [Chivilikhin et al / INDIN’15]
• Slow
• Approximate

2. We propose CSP-translation approach
• Could be faster in practice
• Exact

9/25

s

t

Proposed approach: translation to
Constraint Satisfaction Problem

10/25

CSP-solverData Solution

Propositional
encoding

Solution
reconstruction

https://srlabs.de/bites/minisat-intro/

Proposed approach scheme

11/25

Traces
〈...〉, ... , 〈...〉
〈...〉, ... , 〈...〉
〈...〉, ... ,〈...〉 CSP

solving

No
solution

(UNSAT)

Number of
states N

CSP
〈 , , ℂ〉

Translation
function f

Constraints ℂ
on variables
with domains

Traces tree
construction

Values of
variables

Automaton

CSP
solver

Traces tree

12/25

Variables

13/25

Main constraints (1)

14/25Tree Automaton

Main constraints (2)

15/25Tree Automaton

Case study: pick-and-place manipulator

16/25

Trace generation

17/25

All tests with length = 1, 2, 3
#1: 1
#2: 2

 …
#12: 1, 1, 1

 …
#39: 3, 3, 3

Experimental setup

• Methods
✓ MuACO

• metaheuristic [Chivilikhin et al (2015)]
✓ fbCSP

• Proposed approach
✓ fbCSP+BFS

• fbCSP + BFS-based symm breaking

• State-of-the-art CSP-solvers
✓ Opturion CPX (Minizinc Challenge 2015 winner)
✓ HaifaCSP (Minizinc Challenge 2016 winner)

18/25

Fixed number of states: N = 10

19/25

Minimal model generation

•Most general pattern in the given data

•Occam’s razor (law of parsimony):

“Among competing hypotheses, the one with
the fewest assumptions should be selected”

20/25

Minimal model generation

21/25

N = 1

Solve

UNSAT

N := N + 1 Satisfiable

Return
solution

Minimal model generation: results

22/25

Generated model example

23/25

Conclusion and Future work

● Proposed fast exact algorithm for inferring

minimal-sized models of basic FBs for logic control

● Available: https://github.com/chivdan/cspgen

● Future/ongoing work

○ Integer/real variables
○ Timers
○ Composite FBs
○ CEGAR for LTL/CTL based inference

24/25

Thank you for your attention!

Daniil Chivilikhin, chivdan@rain.ifmo.ru

