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Program synthesis

2/25

● Derive implementation from examples/specification

○ From seminal work [A. Church, 1963]

● Motivation

○ Fundamental in computer science

○ Automation of software engineering

■ Reverse engineering

Specification/
examples Implementation

Synthesis



EXESRC SRC

Reverse engineering of software
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● Rights limitations
● Changing standards
● ….

● Understanding
● Optimization
● Verification
● ….



Black-box approach

What’s in the box?
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(Controller)
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Target language: IEC 61499 function blocks
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Test-based reverse engineering
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Scenarios
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Basic function block model

Boolean input/output vars
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Previous/proposed approaches

1.  Metaheuristic: [Chivilikhin et al / INDIN’15]
• Slow
• Approximate

2.  We propose CSP-translation approach
• Could be faster in practice 
• Exact
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Proposed approach: translation to 
Constraint Satisfaction Problem
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CSP-solverData Solution

Propositional 
encoding

Solution 
reconstruction

https://srlabs.de/bites/minisat-intro/



Proposed approach scheme
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Traces tree
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Variables
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Main constraints (1)
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Main constraints (2)
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Case study: pick-and-place manipulator
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Trace generation
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All tests with length = 1, 2, 3
#1:   1
#2:   2

 …
#12: 1, 1, 1

 …
#39: 3, 3, 3



Experimental setup

• Methods
✓ MuACO

• metaheuristic [Chivilikhin et al (2015)]
✓ fbCSP

• Proposed approach
✓ fbCSP+BFS

• fbCSP + BFS-based symm breaking

• State-of-the-art CSP-solvers
✓ Opturion CPX (Minizinc Challenge 2015 winner)
✓ HaifaCSP (Minizinc Challenge 2016 winner)
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Fixed number of states: N = 10
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Minimal model generation

•Most general pattern in the given data

•Occam’s razor (law of parsimony): 

“Among competing hypotheses, the one with 
the fewest assumptions should be selected”
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Minimal model generation
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N = 1

Solve

UNSAT

N := N + 1 Satisfiable

Return 
solution



Minimal model generation: results
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Generated model example
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Conclusion and Future work

● Proposed fast exact algorithm for inferring 

minimal-sized models of basic FBs for logic control

● Available: https://github.com/chivdan/cspgen

● Future/ongoing work

○ Integer/real variables
○ Timers
○ Composite FBs
○ CEGAR for LTL/CTL based inference
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Thank you for your attention!

Daniil Chivilikhin, chivdan@rain.ifmo.ru


