This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Reconstruction of Function Block Logic using
Metaheuristic Algorithm

Daniil Chivilikhin, Member, IEEE, Anatoly Shalyto, Member, IEEE, Sandeep Patil, Student Member, IEEE and
Valeriy Vyatkin, Senior Member, IEEE

Abstract—An approach for automatic reconstruction of au-
tomation logic from execution scenarios using a metaheuristic
algorithm is proposed. IEC 61499 basic function blocks are
chosen as implementation language and reconstruction of Ex-
ecution Control Charts for basic function blocks is addressed.
The synthesis method is based on a metaheuristic algorithm that
combines ideas from ant colony optimization and evolutionary
computation. Execution scenarios can be recorded from testing
legacy software solutions. At this stage results are only limited
to generation of basic function blocks having only Boolean
input/output variables.

Keywords—Automatic model synthesis, industrial automation
software, evolutionary computation, control system synthesis.

I. INTRODUCTION

HE IEC 61499' standard [1] defines an open architecture

for distributed control and automation systems. The ele-
mentary component of IEC 61499 is a function block (FB).
All FBs are characterized by an interface, which defines used
input/output events and input/output variables. Basic FBs are
represented by event-driven Execution Control Charts (ECCs),
which are Moore finite-state machines (FSMs). Composite
FBs are defined by a network of other FBs, either basic or
composite.

Migration from legacy automation systems based on Pro-
grammable Logic Controllers (PLCs) to the new generation
IEC 61499 systems has been actively addressed by the research
community. In addition to the widely claimed flexibility and
distributability of IEC 61499 applications, the state machine
based programming of IEC 61499 FBs offers much better
readability and maintainability of software, though some issues
regarding industrial acceptance [2] and different execution
semantics [3], [4] persist. However, most works on migration
assume that PLC code is available and propose methods of
generating an equivalent FB application in IEC 61499. This

D. Chivilikhin and A. Shalyto are with the Computer Technologies
Laboratory, ITMO University, St. Petersburg 197101, Russia (email: chiv-
dan@rain.ifmo.ru, shalyto@mail.ifmo.ru).

S. Patil is with the Department of Computer Science, Electrical, and Space
Engineering, Luled University of Technology, Luled 97187, Sweden (email:
sandeep.patil@ltu.se).

V. Vyatkin is with the Department of Electrical Engineering and Automa-
tion, Aalto University, Espoo 02150, Finland, and also with the Department
of Computer Science, Electrical, and Space Engineering, Lulea University of
Technology, Luled 97187, Sweden (e-mail: vyatkin@ieee.org).

v, Vyatkin, IEC 61499 Function Blocks for Embedded and Distributed
Control Systems Design, 2nd Edition, ISA 2012

would not help in frequently encountered situations when the
source code is no longer available. It also applies to long-
supported projects in IEC 61499 — source code can be lost
over time.

An ideal solution would be to put the legacy system into
a test environment and record traces of its behavior, after
which a software tool might be used to reconstruct the code
automatically. There are quite a few approaches to test case
generation for industrial automation systems [5], [6], however
most of them also require access to source code. For generating
test cases in the abscense of source code we need to turn
our attention to black-box testing (nothing is known about the
system under test except its reactions to input signals).

This paper attempts to make a first step to automate the de-
velopment process of IEC 61499 applications. The contribution
of the paper is an approach that, under several simplifications,
is able to infer an ECC of a basic FB from examples of its
behavior — sequences of input/output variable value sets called
execution scenarios. The approach is able to infer both the
transition diagram and the algorithms associated with ECC
states. This result opens a perspective that one day an engineer,
instead of designing an ECC himself, could supply several test
cases to a procedure that would automatically generate the
ECC.

In this paper ECCs are inferred using a metaheuristic
algorithm MuACO [7] based on ant colony optimization [8]
and evolutionary computation [9]. The proposed approach falls
into the search-based software engineering framework [10],
[11], where search-based optimization techniques, such as ant
colony optimization or evolutionary computation, are used for
solving various problems arising in the software engineering
domain. Preliminary results were published in conference
proceedings [12], but this extended version has the following
unique contributions: (1) handling input/output events — earlier
we assumed that only the REQ input event and CNF output
event are used and (2) handling multiple output actions per
ECC state instead of only one.

The rest of this paper is structured as follows. Section II
reviews some related work. In Section III we provide a
more formal statement of the problem solved in this paper.
Section IV describes the proposed approach. Experimental
results are described and discussed in Section V and Section VI
concludes.

Copyright (c) 2009 IEEE. Personal use of this material is permitted. However, permissions to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

EVENT —INIT INITO EVENT
EVENT REQ CNF EVENT
O
Control
BOOL X a BOOL
BOOL y b BOOL
BOOL z

(a) Function block interface example

Fig. 1.

II. RELATED WORK

There has been a substantial body of publications on migra-
tion from PLCs to IEC 61499, for example [13], [14], [15],
[16], but all such methods assume availability of source code.
We emphasize that the approach developed in this paper does
not use source code in any way.

This work is based on the recent progress in inferring
various kinds of finite-state machine models. The most closely
related work is devoted to inferring FSMs for controlling an
unmanned aircraft [17]. In this paper FSMs are inferred from
execution scenarios recorded by a human pilot using a flight
simulator. The inferred FSM is able to reproduce a maneuver
the pilot recorded in scenarios. A scenario element consists of
real values: a set of flight parameters (e.g. altitude, airspeed)
and a set of aircraft control parameters (e.g. elevator, ailerons).
Real input variables are converted to Boolean variables using
human-designed predicates. However, this method is not appli-
cable to the problem addressed in this paper since it (1) does
not support general form Boolean formulas on transitions, (2)
uses a different state machine execution semantics than the
one used in IEC 61499 and (3) does not allow to have several
output actions per one state.

Another group of methods address the problem of inferring
behavior models of software. In [18] an algorithm for inferring
finite-state models of software from traces has been proposed.
The algorithm also takes into account temporal constraints
expressed in Linear Temporal Logic. Models inferred in that
paper can be used for verification and testing, but cannot
substitute software they were inferred from.

Finally, a powerful method exists for inferring extended
finite-state machines (EFSMs) from scenarios [19]. The
method is based on translating the problem of EFSM infer-
ence to Boolean satisfiability (SAT) and using state-of-the-art
SAT-solvers. General form Boolean formulas on transitions
are supported, however the efficiency of the method greatly
diminishes when the number of input variables and input data
length increase. Furthermore, this method is inapplicable for
the type of input data available in the problem solved in this
paper.

In conclusion of this section we can note that all state
machine inference methods are specialized for the concrete

INIT
—~~
o oo |
1 /
[alg_12]CNF
[alg_10] CNF

REQ &xAND z

aIg_Ol
(b) Execution control chart example

Examples of a function block interface (left) and execution control chart (right)

type of inferred machine (EFSMs, finite-state transducers,
etc.) and available type of training data. To the best of our
knowledge, no attempt has yet been made to infer IEC 61499
function block logic from any type of data.

III. PROBLEM STATEMENT
A. IEC 61499 Standard

IEC 61499 applications are designed in the form of a
network of interconnected FBs. Each FB has an interface
defining input/output events and variables. Variables can be,
for example, Boolean, integer, or real, and can be associated
with input and output events. Such associations mean that
upon receiving an event the FB requests the latest values of
associated variables.

Basic FBs are represented by Moore finite-state machines
called Execution Control Charts (ECCs). An ECC is comprised
of a set of states connected with transitions. In the beginning,
the ECC is in the initial state. When an input event is received,
the ECC switches to another state if one of the transitions
is triggered. This happens if the guard condition (Boolean
formula over input/output/internal variables and constants) of a
transition is satisfied. Transitions are checked in the order they
are recorded in the source file of the FB; the first transition
for which the guard condition is satisfied is triggered.

A state can have a number of associated output actions,
each action consists of an algorithm execution and output event
generation. Algorithms are commonly implemented using the
Structured Text language and used, for example, for setting
output variable values. An example of an FB interface is
shown in Fig. la, associations of events with variables are
depicted by vertical lines. An example of an ECC is shown
in Fig. 1b. Note that the “1” guard condition on the transition
from state “Init” to state “1” denotes “True”. As defined in
the IEC 61499 standard, “1” denotes “‘a transition condition
with no associated event and a guard condition that is always
TRUE”. Output algorithms are denoted “alg_00"—*“alg_11": for
example, “alg_01” is implemented as a = 0, b = 1.

Note that state “3” has two associated output actions with
algorithms “alg_11" and “alg_10". It might seem that the first
action “alg_11" is redundant, since after the execution of the
second algorithm output variable b will be set to 0. However,

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

. Instrumented
Function)
block function
block

[Human] []
. Test cases
designer

Fig. 2. Proposed approach scheme

—
Refactoring

c
i)
=
©

=
£
(2]

it is not the case: since this action also generates a “CNF”
output event, other FBs may be triggered by b being set to 1
by the first algorithm.

B. Definitions

In this work we will consider a simplified model of the
ECC, in which (1) all input and output variables are Boolean
and (2) guard conditions depend on input variables only.
Assuming that, an execution control chart is defined as an
eight-tuple (Y, E1, X, FEO, Z,yo, ¢, \), where Y is a finite
set of states, FI is a set of input events, X is a set of
Boolean input variables, FO is a set of output events, Z is
a set of Boolean outﬁ)ut variables, yo € Y is the initial state,
¢:Y x EI x {0,1}XI — Y is the transitions relation and
AY = {Q) x EO | Qi:{0,1}14] — {0,1}I#1}; is the
outputs relation.

Without loss of generality we can assume that the initial
state yo is always state 0. The outputs relation defines that
each state is associated with a list of output actions, each
action consisting of an algorithm and an output event. In our
simplified case algorithms are functions over output variables
that transform a Boolean string to another Boolean string.

In this work we define an execution scenario s as a sequence
of execution scenario elements s;, where each element consists
of an input event e, a set of input variable values y, and a
list of output actions Oy ...On, —1 (IVs, denotes the number
of output actions in s;). Each oufput action Oy is described by
a set of output variable values ¢* and an output event e$". For
example, if there are three input and two output variables,

(REQ,000,{(00,CNF)}),
(REQ,001,{(01,CNF),(10,CNF)}),
(REQ,101,{(11,CNF)})

is an execution scenario.

We formulate the problem solved in this paper in the
following way: design a method that, given a basic FB with
known interface but unknown ECC, produces an ECC that
complies with supplied execution scenarios.

IV. PROPOSED APPROACH

The overall scheme of the proposed approach is shown on
the diagram in Fig. 2. The input FB is first refactored in order
to allow execution scenarios recording [12]. A human designer
supplies test cases. The FB application with the refactored FB
is run on test cases, execution scenarios are recorded. Scenarios
are fed to the proposed ECC inference algorithm. Finally, the
inferred ECC model is generalized.

Execution
scenarios

Inference

ECC model

(=
K]
©
N
®

[J

(7}

=

o}
o

The model inference algorithm we use is based on the
MuACO algorithm [7]. This algorithm is metaheuristic; such
algorithms can be used for finding good solutions of hard
optimization problems in reasonable time. In general, all
metaheuristics perform a guided search in the search space
(set of all feasible solutions) of the optimization problem. The
solution considered by the algorithm at any point in time is
called a candidate solution or an individual. Such algorithms
are commonly used when the search space of an optimization
problem is too large to be searched completely. The problem
considered in this paper is closely related to the problem of
learning deterministic finite automata, which has been proven
by Gold to be NP-complete [20]. Therefore, metaheuristic
algorithm is used.

A. Execution Control Chart Models

In this paper we use two ECC models: the first one which
we call simple is used during inference, and the second full
model is used during ECC generalization. The models differ
in the way the transitions relation is represented. Below we
first describe the full model and then define the simple model
on its basis.

1) Full ECC Model: The easiest way to represent the transi-
tions relation ¢ of an ECC in an individual of a metaheuristic
algorithm is to store a |EI| x 2/X! table for each state: a
transition array of 2/X| elements for each input event. However,
due to the possibly large number of input variables this naive
approach is infeasible. A better way to represent the transitions
relation is the reduced tables approach [21]. In this approach
it is assumed that not all input variables are essential for
determining the appropriate transition in each state. Variables
that are necessary are called significant, all other variables are
called insignificant. Indeed, it is often the case that, though
an FB has ten input variables, two or three variables are
enough for making the right transition choice. Each state in the
reduced tables approach has an associated significance mask
m, which contains a Boolean significance variable for each
input variable. If for some state m; = true, then the input
variable z; is significant in this state.

However, simply adopting the reduced tables approach is not
enough for modeling ECCs. The reason is that this approach
only allows to represent rather simple Boolean formulas which
do not use parentheses or disjunction, e.g. x1 A —T2 A 3.
Boolean formulas on ECC transitions are often more compli-
cated, e.g. 1 A (—x2 V —x3). To represent such formulas we
will use the fact that any Boolean formula can be represented
in Disjunctive Normal Form (DNF): (... A...A..)V...V(...A

. A ...). Each state will have a set of associated transition

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

X]_&X2

X1 & X2

0 1 2 0 1 2

my| 1100 m |0 11
X, Y X, X,y

@, [0|1 @ |0]0]-1
111 0| 1]-1
1101

1110

Fig. 3. An example of an ECC model and the representation of state O.
The “-1” entries mean that the corresponding transitions are not present in the
transition group.

groups for each input event, where each transition group is a
reduced transition table with its own significance mask. For
example, formula 1 A (—z2 V —z3), which is equivalent to
(x1 A—x2) V(21 Ax3), can be represented with two transition
groups with variables (z1,x2) and (x1,x3) being significant
in the first and second group respectively.

Summing up, our full ECC model is represented as a
set of states Y, where each state y has a set of transition
groups T, for each input event. Each transition group ¢ € T},
has an associated Boolean array called the input variable
significance mask m; and a transition table ®; of 1 x gsum(my)
elements, where sum(m;) is the number of elements in m;
that are true. Each j-th element of ®, stores the new state
for the corresponding transition. For example, if there are four
significant input variables zo—x3, ®7 stores the new state that
the ECC has to change to when (zg, 21, z2,23) = (0,1,0,1)
since 0101 = 5 in the binary system. The model also includes
the number K, of output actions for each state y of the ECC.
Examples of an ECC model and its representation are shown
in Fig. 3: the ECC model is the state diagram on top and the
representation of transitions from state O is at the bottom.

2) Simple ECC model: In the simple ECC model we assume
that all input variables are significant in all states. However, we
do not store the transition tables for all possible combinations
of input variable values. Instead, only the ones present in
scenarios are considered. This approach reduces the size of
the search space.

The simple ECC model is sufficient for the inference step,
since during inference it is impossible to encounter a com-
bination of input variables that is not present in scenarios.
However, it is insufficient for consequent use of the generated
ECC, since such an ECC would not generalize to unseen data.
Therefore, we also use the full model.

3) Output relation representation: Both ECC models use
the same output relation representation. Since here all output
variables are binary, an algorithm can be represented as a string
of length | Z| over the alphabet {“0”,“1”,“x”}. Let a,; be the

t-th algorithm associated with state y. The ¢-th character of
the algorithm a;, is associated with the i-th output variable.
Algorithms have the following semantics:

° aét = “0”: set 2% < 0;

° alyt =“1": set 2* < 1;

g,

e a,, = “x”": preserve current value of 2t

Instead of storing algorithms and output events in the model
and evolving them simultaneously with the ECC transitions,
we deduce them from execution scenarios before fitness eval-
uation using a state labeling algorithm based on the same idea
as the original one from [22].

B. ECC Inference Algorithm

For ECC model inference we use the parallel version of
the MuACO algorithm [23], [7]. The algorithm starts with a
randomly generated initial solution and explores the search
space using mutation operators, which make rather small
changes to the ECC. The degree to which a candidate solution
complies with execution scenarios is evaluated using a so-
called fitness function. Before computing the fitness function
value of a candidate solution, the algorithms for each state are
determined using state labeling.

C. Mutation Operators

The following two mutation operators were used.

Change transition end state. First we select a random state
with transitions that have been used during fitness evalution
(used transitions). If the model does not have used transitions,
an arbitrary state is selected. Second, a random (used) transi-
tion is selected and the state y it leads to is changed to another
state selected uniformly at random from Y \ {y}.

Change number of output actions in a state. This
mutation operator changes the number of output actions K,
for a randomly selected state y to a new value situated between
one and the maximum length of a sequence of output actions
present in scenarios (inclusively).

D. State Labeling Algorithm

For each state y and output action O, t € [0... K, — 1] a
list of pairs of strings sz is stored. The labeling algorithm con-
secutively processes all execution scenarios. Before processing
each scenario the ECC is in its initial state. Input events and
input variable sets of scenarios are fed to the ECC one by one.

Consider processing the k-th scenario element (£ > 0) when
the current state is y. The ECC makes the transition induced
by the set of input variables sj.y, changing the current state
y to a new value Yney-

First we add the pair (sg_1.¢"v™', 5;,.¢°) to PJ) . This
deals with moving from the last output action of the previous
scenario element to the current scenario element.

Second, for each two consecutive output actions O, and
Oy41 (t > 0) in element s;, the pair (s;.C*, s;.¢**1) is added
to the list ngnew. This deals with the fact that a scenario element
may have more than one output action.

After all scenarios have been processed, algorithms for
all states are determined according to Algorithm 1. Labels

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Algorithm 1 State labeling algorithm

Algorithm 2 Fitness function for a single scenario

Require: List of pairs Pyt for each y and each ¢
1: for all y € Y do
22 forallte[0...K,—1] do
3: @yt <— new char(|Z|]

4 fori=0to |Z] —1do
5: do < 0,dy <+ 0,d, < O
6: for all (I,7) € P, do

7: dp, < dp, +1

8 if [; = r; then

9: dy < dz +1

10: end if

11: end for

12: aly + argmax {(“0”, do); (“17, d1); (“X”, ds) }
13: end for

14: end for

15: end for

(algorithms) for each state y and each action position ¢ are
determined separately. In line 3 the string a,; representing
the algorithm for state y in position ¢ is initialized. Then in
line 4 we iterate over all characters in the algorithm string.
Each such character is also determined separately. In line 5
we initialize variables dj, d; and d,. The first two are used
for storing how many times the second symbol of a pair is 0
or 1, variable d, is incremented if symbols in a pair are equal.
The i-th character of the algorithm is selected in line 12 as an
argument of the maximum value of a decision relation. Output
events are determined by a similar procedure.

E. Fitness Function
The fitness function we used consists of three components:

F = ciFey + coFge + c3F,

where Fy, is based on the cumulative errors the ECC makes,
Fi. is based on the position of the first error made by the
model, Fy. is the number of state changes, and ci—cs are
constants. The process of calculating a fitness function value
for one scenario is described in Algorithm 2. Evaluation
of several scenarios is done by averaging the corresponding
fitness values for individual scenarios. In this pseudocode
we omit implementation details and assume for simplicity
that each state and each scenario element have exactly one
associated output action.

In the beginning y is the initial state 0. Variable ng is
used for counting the number of state changes made by the
ECC. Variable ng stores the index of the scenario element
on which the ECC makes the first error in output variable
values or output event. Variable z holds the current values of
output variables. Expression a.apply(z) (lines 2, 7) denotes
the application of the algorithm a to output variable values z.
For example, “x0x1”.apply(0110) = 0011.

The “for” loop iterates over scenario elements (lines 4—
16). For each element the next state is determined using the
nextState function based on the current state y, input event
s;.€" and input variable values s;.y (line 5). If the transition

Require: M — ECC model, s — scenario
Ly <0, nge < 0, nge < —1
2z ay.apply(0|Z‘)
3: Avar <_ 07 ABVCntS (_ 0

4. for i=0to |s|]—1do

50 Unext & My.nextState(si.ei“, $:-X)

6: if Ypexe # —1 then

7: Y Ynexts 2 — Gy.apply(z)

8: Nge ¢ Nge + 1

9: e — M, .e™

10: OV — ﬁAH(si.(j, z), OVeNS «— J(e%M £ 5;.e%M)
11: if (ne =—1) A (6" > 0V 6" > () then
12: Nfe < 1

13: end if

14: Avar — Ava.r +§va.r’ Aevents «— Aevenls +5evenls
15: end if

16: end for _

17: Fo = 1 — 520 o

2max(A% [s[) 2 max(Acvens Js])
Mfe Ne
18: E‘e — ‘Slif—l’ FSC < 1 - Sl
19: return ¢y Foq + coFye + c3Fy.

exists (Ynext #Z —1), then the current state is updated, the new
algorithm is applied to the current output variables, and the
number of state changes is increased. In line 10 the errors
5% and §°¥*"™ in output variable values and output events are
calculated. The A g function computes the Hamming distance
between two strings and [is an indicator function that equals
one iff its Boolean argument is true. Then in lines 11-13 we
check if the first error in output variable values and/or output
events occurred at the current scenario element.

In lines 17-18 fitness function component values are deter-
mined and in line 19 the final fitness function value is calcu-
lated. Coefficients ci—c3 are selected such that the maximum
value of the fitness function is 1.0001 (this exact value cannot
be reached in practice unless a correct ECC makes zero state
changes, which is impossible). In experiments reported in this
paper ¢; = 0.1, ¢ = 0.9, ¢35 = 0.0001.

Due to the large total length of scenarios, evaluating all
candidate solutions using full scenarios is very computationally
expensive. Therefore we used a hierarchy of shortened sets
of scenarios. Scenario shortening was done by finding all
subsequences of equal scenario elements and collapsing each
such sequence down to a maximum of ng,e elements. A
candidate solution is first evaluated using the shortest set of
scenarios. If it passes all scenarios and has a fitness value
greater than or equal to 1, it is evaluated using a larger set of
scenarios. This approach was inspired by [24].

F. Model Generalization

To generalize the inferred simple ECC model to a full model
the following post-processing procedure is performed after a
perfect solution is found. A greedy algorithm is used: at each
step the model is modified, the change is retained if the fitness
function value of the modified model value did not decrease.

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

First we try to delete each transition from each state. Second,
we try to delete each significant input variable of each tran-
sition group. First the selected variable is made insignificant:
m; < false. The size of the transition table is halved. When
a variable is made insignificant, we have to choose which of
the two transitions to preserve — the one with x; = true
or with z; = false. We first try to keep the transition with
x; = false. If this makes the ECC incorrect, we consequently
attempt to leave the transition with x; = true. The process is
repeated until no fitness non-decreasing changes can be made.
Finally, an attempt is made to generalize output algorithms:
each algorithm element is replaced with “x”, the change is
retained if it does not decrease the fitness value.

V. EXPERIMENTS

The purpose of the experiments was to demonstrate the
principal viability and applicability of the proposed approach
to basic FB reconstruction from behavior examples without
the use of source code. Some of the default parameter values
for the parallel MuACO algorithm from [23] were altered:
Nstag = 100, Ny = 10. Selected values are better suited
to the large search space of the ECC inference problem. In the
fitness function we used two shortened sets of scenarios with
Ngeale = 1 and ngeqre = 2.

Experiments were performed for one of the basic FBs of
the Pick-and-Place (PnP) manipulator project [25] (Fig. 4).
The FBDK? development environment was used for recording
execution scenarios and post-synthesis simulation, ECC plots
were generated using nxtStudio®. This PnP implementation has
two horizontal pneumatic cylinders (I and II), one vertical
cylinder (IIT), and a suction unit (IV) for picking up work
pieces. When sensors determine that a new work piece (*)
appeared in one of the input trays (1, 2, 3), the PnP system
retrieves the work piece and puts it on the output slider (V).

In this particular implementation logic control is performed
in a centralized way by a single basic FB CentralizedControl.
It receives signals when work pieces appear in the input trays
and sends commands to other FBs that control the movement
of the cylinders and the suction unit. We chose this basic FB for
testing our approach because it uses only Boolean input/output
variables, and implements some non-trivial logic.

The interface of the CentralizedControl includes the fol-
lowing Boolean input variables: clHome/c1End (cylinder I is
in the leftmost/rightmost position), c2Home/c2End (same for
cylinder II), vcHome/vcEnd (cylinder III is in the top/bottom
position), ppl/pp2/pp3 (a work piece is present in input
tray 1/2/3), vac (the suction unit is on). The following
Boolean output variables are used: clExtend/clRetract (ex-
tend/retract horizontal cylinder I), c2Extend/c2Retract (same
for cylinder II), vcExtend (extend vertical cylinder III), vac-
uum_on/vacuum_off (turn suction unit on/off).

For comparison purposes we confront the generated ECC
with the manually created one, further referred to as original.
The original ECC of the CentralizedControl FB is shown in
Fig. 5. It has nine states (excluding the Start and Init states)

Zhttp://www.holobloc.com/doc/fbdk
3http://www.nxtcontrol.com/

[EEETENTVIT =
1 2 3

Fig. 4. Screenshot of one the Pick-and-Place manipulator system implemen-
tations

_ANITy

REQ & ppl AND vcHome
1

REQ & NOT ppl AND pp2 AND vcHome

extendl | CNF

REQ & NOT pp1 AND NOT pp2

AND NOT pp3 AND vcHome extend2

REQ & c1End

REQ & c2End

REQ & c1End AND c2End

REQ & vcHome AND
c1Home AND c2Home REQ & vac AND

c1Home AND c2Home

REQ & vcEnd AND
NOT (c1Home AND c2Home)

REQ & vcHome AND
(NOT c1Home OR NOT c2Home)

REQ & vcEnd AND c1Home AND c2Home

REQ & vac

REQ & NOT va "

Fig. 5. Original ECC of the CentralizedControl FB

and 15 transitions. We shall note, however, that the original
ECC is not anyhow used in the reconstruction process.

A. Inferring ECC Models

The experiment plan was as follows: (1) record execution
scenarios, (2) use the proposed approach to infer an ECC
model compliant with all scenarios and (3) test all inferred
ECC models in simulation using FBDK.

Each scenario is defined by a test case, which is the order of
work pieces the PnP manipulator has to process. For example,
‘1-2-3° denotes a test case where first the manipulator is given
piece number one, then piece number two, and, finally, piece
number three. We recorded 39 test scenarios based on all test
cases of lengths one, two and three: from ‘1’ to ‘3-3-3’. A
scenario set is denoted by the number of scenarios it includes:
for example, set 5 includes scenarios ‘1°, ’2’, ’3’, ’1-1°, *1-2’.
The length of a scenario set is calculated as the total number of
elements of its scenarios, the largest scenario set has a length of
150170. It is assumed that all scenarios are independent — the
original ECC is reinitialized before recording each scenario.

The number of ECC states can be estimated by calculating
a set of algorithms that can be used to represent test scenarios

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 7
s | o
8 .
g o ;
o 9 -
© H
S o |
8 8-
3 8
12}
£’ % e
= T T f
g - 23 8 o g 8 Ell;l E
2 8§ § o 2 8
o +_*$54;$é=%¥5¥%$%§?* = ‘*
T T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Number of scenarios
Fig. 6. Running times of the proposed algorithm in dependence from the number of test scenarios
TR — > — (i) TABLE 1. STATISTICS ON INFERRED ECCs
/ REQ & ppl’ extend1[CNF
1 Re0t e~ n 1 2 3 7 39
REQ & pp2 & NOT pp)Nndz Scenarios length 1271 2806 4609 15590 150170
N ﬁ& NGT vac REQ&(ZEM REQ & c1End % of r:lqvered 60 % 87 % 100 % 100 % 100 %
o REQ & NOT pp2 AND pp3 . transitions
REQ & vcHome & NOT vac VeEn . it
/REO& Ed\ . Mean trdnsltlon‘ 1.6 20 303 6.06 51
coverage frequency
\rmcwc # of states
REQ & vcHome AND vac REQ & vcEnd AND NOT vac [extendvc]CNF | (min/avg/max) 7/10/10 8/10/10 9/10/10 9/10/10 9/10/10
\ .
REQ & NOT vac .— # of transitions 10/13/16 13/18/22 13/19/24 15/21/26 18/21/24
(min/avg/max)
REO & c1Home AND c2Home
McCabe’s complexity
; 2/5/10 6/10/14 5/11/16 8/13/18 11/13/16
REQ & vcEnd AND vac (ml?/an/l.nax)
of variables in guards | 11 /1503 16433 152839 2030140 22/29/39
(min/avg/max)
Fig. 7. One of inferred ECC models] .)
& # of state changes 10/13/16 18/23/28 25/32/39 102/124/152 918/1162/1496
(min/avg/max)
of state changes 9 18 27 99 918
(original)

and taking its power as an estimate of |Y|. Unfortunately,
this is neither a lower nor an upper bound, so to find an
appropriate value we have to iterate over |Y'|. However, this is
not necessary to show the viability of the method so this step
was excluded from the experiment protocol.

A machine with a 64-core AMD Opteron™6378 @ 2.4 GHz
processor was used. The proposed method was implemented in
Java and run on 16 cores with a maximum of 32 GB of RAM.
The experiment was repeated 40 times for scenario sets 1—
20 and 30 times for scenario sets 21-39. Boxplots of running
times in dependence from the number of test scenarios are
shown in Fig. 6: each i-th boxplot corresponds to a series of
experiments with the i-th scenario set. Though the span of the
boxplots increases as scenario sets get larger, median running
times (depicted with horizontal lines inside the boxes) increase
almost linearly.

Afterwards, all solutions constructed from 39 test scenarios
were tested in simulation using FBDK. Each ECC model was
automatically converted to an IEC 61499 function block format
file. Then it was translated to Java code using a call to a library
supplied with FBDK and compiled. In simulation testing we
checked that the model can correctly handle all test cases it
was trained on. All constructed solutions passed this test. One
of the constructed ECC models is shown in Fig. 7. Algorithms
that are identical to the ones used in the original ECC are called
by their names.

B. Results Analysis

The original ECC has 9 states, 15 transitions, and uses
a total of 32 significant input variables in guard conditions.

To illustrate the structural complexity of ECCs, we measured
McCabe’s cyclomatic complexity [26], which indicates the
number of linearly independent paths in an ECC. Since an
ECC is a connected graph, it is calculated as the number of
transitions minus the number of states plus two. McCabe’s
cyclomatic complexity equals 8 for the original ECC. Table I
summarizes data on used test scenarios and the structure of
inferred ECCs in comparison to the original one.

To evaluate how well used scenarios cover the original ECC,
two notions of coverage were used: percentage of covered
transitions and transition coverage frequency. The former is
classical, and the latter is the mean number of times each
transition is covered by the scenarios (more precisely, the
number of unique scenario prefixes ending at a transition).
One can notice that the classical coverage is 100 % for three
scenarios already. However, this does not mean that all possible
behaviors are covered.

The mean number of states is 10 for all experimental runs. In
total, the complexity of generated ECCs increases as scenario
sets get larger: mean number of transitions increases from 13
for one scenario to 21 for 39 scenarios, McCabe’s complexity
increases from 5 to 13, number of variables in guard conditions
rises from 15 to 29. The table also shows the number of state
changes made by the generated and original ECCs. Minimal
values for generated ECCs are similar to the values for the
original ECC. None of the inferred ECCs are isomorphic to
the original ECC. This indicates that though all these solutions
demonstrate identical behavior on test scenarios, their logic is

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

very different. However, characteristics of solutions generated
from 39 scenarios are close to the ones of the original ECC.
These experimental results allow us to conclude that the
proposed method is able to solve the addressed problem:
generate an ECC that complies with given execution scenarios
with no knowledge of the original ECC. Moreover, results
indicate that, on average, the method scales linearly with
respect to the total length of given execution scenarios.

C. Larger example: reconstructing composite FB behavior

To check the scalability of our approach we performed
another experiment with a six-cylinder PnP system [27]. The
controller there is implemented as a composite function block,
therefore generated scenarios may have several output actions
per one input event. The composite function block has 19 input
and 14 output variables. Our method was able to reconstruct
the behavior of the system for one test case (scenario length
19020): picking up the first work piece and delivering it to the
output slider. It took the algorithm an average of 4994 seconds
(min=63, max=10832) using 16 threads to construct a solution
with 20 states. In comparison, for the three-cylinder PnP
inferring an ECC for a similar scenario size takes only about
160 seconds. This is probably due to the target ECC having a
large amount of input variables and several output actions per
state — mutations that change this number are quite destructive.
These results indicate that though the proposed method is in
principle applicable to composite FBs, it should be specifically
enhanced for this purpose to have better performance.

VI. CONCLUSION

We have presented an approach for reconstructing ECCs of
basic IEC 61499 FBs with Boolean input/output variables and
demonstrated its feasibility on two examples. In the future we
plan to add support for integer and real input/output variables,
as well as extend the presented approach to achieve an even
wider goal — automated inference of correct-by-design func-
tion block programs. Such methods already exist for abstract
models called extended finite-state machines (EFSMs) [28]
and simpler finite-state models [18]. The basic idea is that
verification is introduced into the candidate solution evaluation
process. Much work has been done on formal verification
of both IEC 61499 [25], [29], [30] and IEC 61131 [31],
[32] software. Combining these results could bring automated
inference of function block applications closer.

A standing issue of all model inference approaches including
the presented one is ensuring completeness of the used set of
scenarios. One approach is to have a large set of scenarios. This
is supported by the proposed method since it scales well with
the size of scenarios. Another argument is that the test engineer
that will be responsible for test case generation should have
complete knowledge of what the system should do (however,
not how). Therefore he should be able to design a sufficiently
complete set of tests. In addition, if the reconstructed FB
demonstrates erroneous behavior (which can be discovered,
e.g., by simulation testing or runtime verification), additional
test cases can be derived from such behaviour. The FB should
then be reconstructed again with the new test cases.

ACKNOWLEDGMENT

This work was financially supported by the Government
of Russian Federation, Grant 074-UO1, and also partially by
RFBR, research project No. 14-01-00551 a. We also thank
Vladimir Ulyantsev and the anonymous reviewers for useful
comments.

REFERENCES

[1] V. Vyatkin, “IEC 61499 as enabler of distributed and intelligent
automation: State-of-the-art review,” IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, pp. 768-781, 2011.

[2] S. Sierla, J. Christensen, K. Koskinen, and J. Peltola, “Educational
approaches for the industrial acceptance of iec 61499,” in IEEE Con-
ference on Emerging Technologies and Factory Automation (ETFA).
IEEE, 2007, pp. 482-489.

[3] G. Cengic and K. Akesson, “On formal analysis of IEC 61499 applica-
tions, part A: Modeling,” IEEE Transactions on Industrial Informatics,
vol. 6, no. 2, pp. 136-144, 2010.

[4] ——, “On formal analysis of IEC 61499 applications, part B: Execution
semantics,” IEEE Transactions on Industrial Informatics, vol. 6, no. 2,
pp. 145-154, 2010.

[S1 R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler, and A. Zoitl,
“Test case generation approach for industrial automation systems,” in
5th International Conference on Automation, Robotics and Applications.
IEEE, 2011, pp. 57-62.

[6] I.Buzhinsky, V. Ulyantsev, J. Veijalainen, and V. Vyatkin, “Evolutionary
approach to coverage testing of IEC 61499 function block applications,”
in 13th IEEE International Conference on Industrial Informatics (IN-
DIN). IEEE, 2015, pp. 1213-1218.

[7]1 D. Chivilikhin and V. Ulyantsev, “MuACOsm: a new mutation-based
ant colony optimization algorithm for learning finite-state machines,”
in 15th annual conference on Genetic and evolutionary computation
(GECCO). ACM, 2013, pp. 511-518.

[8] M. Dorigo and T. Stiitzle, Ant Colony Optimization. MIT Press, 2004.

[91 T. Béck, Evolutionary Algorithms in Theory and Practice: Evolution
Strategies, Evolutionary Programming, Genetic Algorithms. Oxford
University Press, 1996.

[10] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 11:1-11:61, 2012.

[11] M. Harman, “Software engineering meets evolutionary computation,”
Computer, vol. 44, no. 10, pp. 31-39, 2011.

[12] D. Chivilikhin, A. Shalyto, S. Patil, and V. Vyatkin, “Reconstruction of
function block logic using metaheuristic algorithm: Initial explorations,”
in 13th IEEE International Conference on Industrial Informatics (IN-
DIN). 1EEE, 2015, pp. 1239-1242.

[13] W. Dai, V. Dubinin, and V. Vyatkin, “Migration from PLC to IEC 61499
using semantic web technologies,” IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 44, no. 3, pp. 277-291, 2014.

[14] C. Gerber, H.-M. Hanisch, and S. Ebbinghaus, “From IEC 61131 to IEC
61499 for distributed systems: a case study,” EURASIP J. Embedded
Syst., vol. 2008, pp. 4:1-4:8, 2008.

[15] W. Dai and V. Vyatkin, “Redesign distributed PLC control systems
using IEC 61499 function blocks,” IEEE Transactions on Automation
Science and Engineering, vol. 9, no. 2, pp. 390-401, 2012.

[16] M. Wenger, A. Zoitl, C. Sunder, and H. Steininger, “Transformation
of IEC 61131-3 to IEC 61499 based on a model driven development
approach,” in 7th IEEE Conference on Industrial Informatics. 1EEE,
2009, pp. 715-720.

[17] A. Aleksandrov, S. Kazakov, A. Sergushichev, F. Tsarev, and A. Shalyto,
“The use of evolutionary programming based on training examples
for the generation of finite state machines for controlling objects

with complex behavior,” Journal of Computer and Systems Sciences
International, vol. 52, no. 3, pp. 410-425, 2013.

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/T11.2017.2710224, IEEE

Transactions on Industrial Informatics

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

[18] N. Walkinshaw and K. Bogdanov, “Inferring finite-state models with
temporal constraints,” in 23rd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE Computer Society,
2008, pp. 248-257.

[19] V. Ulyantsev and F. Tsarev, “Extended finite-state machine induction
using SAT-solver,” IEEE International Conference on Machine Learn-
ing and Applications, vol. 2, pp. 346-349, 2011.

[20] M. Gold, “Complexity of automaton identification from given data,”
Information and Control, vol. 37, no. 3, pp. 302-320, 1978.

[21] N. Polikarpova, V. Tochilin, and A. Shalyto, “Method of reduced tables
for generation of automata with a large number of input variables based
on genetic programming,” Journal of Computer and Systems Sciences
International, vol. 49, no. 2, pp. 265-282, 2010.

[22] S. M. Lucas and T. J. Reynolds, “Learning deterministic finite automata
with a smart state labeling evolutionary algorithm,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 27, no. 7, pp. 1063—-1074, 2005.

[23] D. Chivilikhin and V. Ulyantsev, “Extended finite-state machine infer-
ence with parallel ant colony based algorithms,” in International Student
Workshop on Bioinspired Optimization Methods and their Applications,
2014, pp. 117-126.

[24] W. Spears and D. Gordon, “Evolving finite-state machine strategies for
protecting resources,” in Foundations of Intelligent Systems, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2010, vol.
1932, pp. 166-175.

[25] S. Patil, V. Vyatkin, and M. Sorouri, “Formal verification of intelligent
mechatronic systems with decentralized control logic,” in /7th IEEE
Conference on Emerging Technologies Factory Automation (ETFA).
IEEE, 2012, pp. 1-7.

[26] T.J. McCabe, “A complexity measure,” IEEE Transactions on Software
Engineering, vol. 2, no. 4, pp. 308-320, 1976.

[27] E. Demin, S. Patil, V. Dubinin, and V. Vyatkin, “IEC 61499 distributed
control enhanced with cloud-based web-services,” in 10th IEEE Confer-
ence on Industrial Electronics and Applications (ICIEA). 1EEE, 2015,
pp. 972-9717.

[28] F. Tsarev and K. Egorov, “Finite state machine induction using genetic
algorithm based on testing and model checking,” in /3th Annual Confer-
ence Companion on Genetic and Evolutionary Computation (GECCO).
ACM, 2011, pp. 759-762.

[29] L. H. Yoong and P. Roop, “Verifying IEC 61499 function blocks using
esterel,” IEEE Embedded Systems Letters, vol. 2, no. 1, pp. 1-4, 2010.

[30] S. Patil, D. Drozdov, V. Dubinin, and V. Vyatkin, “Cloud-based
framework for practical model-checking of industrial automation ap-
plications,” in Technological Innovation for Cloud-Based Engineering
Systems. Springer International Publishing, 2015, vol. 450, pp. 73-81.

[31] H. Carlsson, B. Svensson, F. Danielsson, and B. Lennartson, “Methods
for reliable simulation-based PLC code verification,” IEEE Transactions
on Industrial Informatics, vol. 8, no. 2, pp. 267-278, 2012.

[32] E. Estevez and M. Marcos, “Model-based validation of industrial control
systems,” IEEE Transactions on Industrial Informatics, vol. 8, no. 2,
pp. 302-310, 2012.

Daniil Chivilikhin received his B.Sc. and M.Sc.
degrees in applied mathematics and informatics from
ITMO University, St. Petersburg, Russia, in 2011 and
2013. In 2015 he defended his Ph.D. under the super-
vision of prof. Anatoly Shalyto in ITMO University,
St. Petersburg, Russia. He is currently an Associate
Professor at ITMO University and works in the
Computer Technologies Laboratory since 2013. His
research interests include finite-state models synthe-
sis and verification, industrial informatics, constraint
programming and evolutionary algorithms.

Anatoly Shalyto is a professor and a leading re-
searcher at the department of computer technologies,
faculty of IT and programming, ITMO University,
St. Petersburg, Russia. His research mostly concerns
automata-based programming. In particular, he in-
troduced a methodology for automata-based pro-
gramming called Switch-technology. In later years,
his research is mostly dedicated to connection of
automata-based programming to machine learning
techniques for solving such problems as automata
synthesis, testing and verification. The results of this
research are currently used in a variety of Russian industrial companies. He
is the author of a series of articles devoted to the problems of Computer
Science and education in Russia. For his achievements in education, in 2008
he received a Russian State Government award.

Sandeep Patil (S’11) received the Bachelor’s degree
in computer science engineering from the CMR In-
stitute of Technology, Bangalore, India, in 2005; the
Master of computer science (software engineering)
degree from the Illinois Institute of Technology,
Chicago, IL, USA, in 2010; the Master of Engi-
neering Studies (computer systems) degree from the
University of Auckland, Auckland, New Zealand,
in 2011; and is currently pursuing Ph.D. (Dok-
torand) degree in formal verification of cyber phys-
ical systems from the Dependable Communication
and Computation Systems Group, Lulea University of Technology, Lulea,
Sweden, supervised by chaired prof. Dr. Valeriy Vyatkin. His research interests
include programming distributed industrial automation software systems using
IEC 61499 standard. He is an accomplished software engineering professional
with over eight years of research and development experience in systems and
application software, including four years at Motorola India Pvt. Ltd., India,
as a Senior Software Engineer.

Valeriy Vyatkin (M’03, SM’04) received Ph.D.
degree from the State University of Radio Engineer-
ing, Taganrog, Russia, in 1992. He is on joint ap-
pointment as Chaired Professor (Amnesforetridare)
of Dependable Computation and Communication
Systems, Lulea University of Technology, Luled,
Sweden, and Professor of Information and Com-
puter Engineering in Automation at Aalto Univer-
sity, Helsinki, Finland. Previously, he was a Visiting
Scholar at Cambridge University, U.K., and had per-
manent academic appointments with the University
of Auckland, Auckland, New Zealand; Martin Luther University of Halle-
Wittenberg, Halle, Germany, as well as in Japan and Russia. His research
interests include dependable distributed automation and industrial informatics;
software engineering for industrial automation systems; artificial intelligence,
distributed architectures and multi-agent systems applied in various industry
sectors, including smart grid, material handling, building management systems,
data centres and reconfigurable manufacturing.

Dr. Vyatkin was awarded the Andrew P. Sage Award for the best IEEE
Transactions paper in 2012.

1551-3203 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

